AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hydrogen-bonded metal-nucleobase frameworks for highly selective capture of ethane/propane from methane and methane/nitrogen separation

Ying Liu1Qianqian Xu1Lihang Chen1Changhua Song1Qiwei Yang1,2Zhiguo Zhang1,2Dan Lu1Yiwen Yang1,2Qilong Ren1,2Zongbi Bao1,2( )
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
Institute of Zhejiang University-Quzhou, Quzhou 324000, China
Show Author Information

Graphical Abstract

Two hydrogen-bonded metal-nucleobase frameworks are used to separate high purity CH4 from CH4/C2H6/C3H8 mixtures and efficiently separate CH4/N2.

Abstract

The separation of light hydrocarbons, including C2H6 and C3H8, is essential to natural gas upgrading. Meanwhile, N2 removal from CH4 is also crucial to concentrating low-quality coalbed methane, but the adsorption process is challenging because of the close kinetic diameter. This work reports two hydrogen-bonded metal-nucleobase frameworks (HOF-ZJU-201 and HOF-ZJU-202) capable of efficiently separating C3H8/CH4, C2H6/CH4, and CH4/N2. Due to strong affinity for C3H8 and C2H6, the low-pressure capacity for C3H8 (5 kPa) and C2H6 (10 kPa) of HOF-ZJU-201a exceeds most adsorbents. The ideal adsorbed solution theory (IAST) selectivity of C3H8/CH4 and C2H6/CH4 is 119 and 45 at ambient conditions. According to density functional theory calculations, surface polarization environments formed by electron-rich anions and electron-deficient purine heterocyclic rings contribute to the selective capture of C3H8 and C2H6 with greater polarizability. Furthermore, the high CH4 adsorption capacity (1.73 mmol/g for HOF-ZJU-201a and 1.50 mmol/g for HOF-ZJU-202a at 298 K and 1.0 bar) and excellent CH4/N2 selectivity (6.0 for HOF-ZJU-201 at 298 K), as well as dynamic breakthrough experiments of binary CH4/N2 gas mixture implied their efficacy in the concentration of low-quality coalbed methane.

Electronic Supplementary Material

Download File(s)
12274_2022_4352_MOESM1_ESM.pdf (5.3 MB)

References

1

Tagliabue, M.; Farrusseng, D.; Valencia, S.; Aguado, S.; Ravon, U.; Rizzo, C.; Corma, A.; Mirodatos, C. Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chem. Eng. J. 2009, 155, 553–566.

2

He, Y. B.; Zhou, W.; Qian, G. D.; Chen, B. L. Methane storage in metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5657–5678.

3
Kerry, F. G. Industrial Gas Handbook: Gas Separation and Purification; Taylor & Francis Group: New York, 2006.
4
Speight, J. G. Handbook of Industrial Hydrocarbon Processes, 2nd ed.; Gulf Professional Publishing: Cambridge, 2019.
5

Tang, R. L.; Dai, Q. B.; Liang, W. W.; Wu, Y.; Zhou, X.; Pan, H. Y.; Li, Z. Synthesis of novel particle rice-based carbon materials and its excellent CH4/N2 adsorption selectivity for methane enrichment from low-rank natural gas. Chem. Eng. J. 2020, 384, 123388.

6

Karacan, C. Ö.; Ruiz, F. A.; Cotè, M.; Phipps, S. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int. J. Coal Geol. 2011, 86, 121–156.

7
Häring, H. W.Industrial Gases Processing; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2007.
8
Yang, R. T. Gas Separation by Adsorption Processes; Butterworth Publishers: Oxford, 2013.
9

Lin, R. B.; Zhang, Z. J.; Chen, B. L. Achieving high performance metal-organic framework materials through pore engineering. Acc. Chem. Res. 2021, 54, 3362–3376.

10

Li, P. H.; Ryder, M. R.; Stoddart, J. F. Hydrogen-bonded organic frameworks: A rising class of porous molecular materials. Acc. Mater. Res. 2020, 1, 77–87.

11

Yang, L. F.; Qian, S. H.; Wang, X. B.; Cui, X. L.; Chen, B. L.; Xing, H. B. Energy-efficient separation alternatives: Metal-organic frameworks and membranes for hydrocarbon separation. Chem. Soc. Rev. 2020, 49, 5359–5406.

12

Wang, Y. X.; Peh, S. B.; Zhao, D. Alternatives to cryogenic distillation: Advanced porous materials in adsorptive light olefin/paraffin separations. Small 2019, 15, 1900058.

13

Kan, L.; Li, G. H.; Liu, Y. L. Highly selective separation of C3H8 and C2H2 from CH4 within two water-stable Zn5 cluster-based metal-organic frameworks. ACS Appl. Mater. Interfaces 2020, 12, 18642–18649.

14

Wu, Y. F.; Liu, Z. W.; Peng, J. J.; Wang, X.; Zhou, X.; Li, Z. Enhancing selective adsorption in a robust pillared-layer metal-organic framework via channel methylation for the recovery of C2-C3 from natural gas. ACS Appl. Mater. Interfaces 2020, 12, 51499–51505.

15

Zhang, Y. B.; Yang, L. F.; Wang, L. Y.; Duttwyler, S.; Xing, H. B. A microporous metal-organic framework supramolecularly assembled from a CuII dodecaborate cluster complex for selective gas separation. Angew. Chem. 2019, 131, 8229–2834.

16

Li, L.; Wang, X. S.; Liang, J.; Huang, Y. B.; Li, H. F.; Lin, Z. J.; Cao, R. Water-stable anionic metal-organic framework for highly selective separation of methane from natural gas and pyrolysis gas. ACS Appl. Mater. Interfaces 2016, 8, 9777–9781.

17

Lv, D. F.; Wu, Y.; Chen, J. Y.; Tu, Y. H.; Yuan, Y. N.; Wu, H. X.; Chen, Y. W.; Liu, B. Y.; Xi, H. X.; Li, Z. et al. Improving CH4/N2 selectivity within isomeric Al-based MOFs for the highly selective capture of coal-mine methane. AIChE J. 2020, 66, e16287.

18

Chang, M.; Zhao, Y. J.; Liu, D. H.; Yang, J. F.; Li, J. P.; Zhong, C. L. Methane-trapping metal-organic frameworks with an aliphatic ligand for efficient CH4/N2 separation. Sustainable Energy Fuels 2020, 4, 138–142.

19

Chang, M.; Ren, J. H.; Yang, Q. Y.; Liu, D. H. A robust calcium-based microporous metal-organic framework for efficient CH4/N2 separation. Chem. Eng. J. 2021, 408, 127294.

20

Niu, Z.; Cui, X. L.; Pham, T.; Lan, P. C.; Xing, H. B.; Forrest, K. A.; Wojtas, L.; Space, B.; Ma, S. Q. A metal-organic framework based methane Nano-trap for the capture of coal-mine methane. Angew. Chem., Int. Ed. 2019, 58, 10138–10141.

21

Li, L. Y.; Yang, L. F.; Wang, J. W.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Ren, Q. L.; Bao, Z. B. Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework. AIChE J. 2018, 64, 3681–3689.

22

Wu, X. F.; Yuan, B.; Bao, Z. B.; Deng, S. G. Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework. J. Colloid Interface Sci. 2014, 430, 78–84.

23

Ren, X. Y.; Sun, T. J.; Hu, J. L.; Wang, S. D. Highly enhanced selectivity for the separation of CH4 over N2 on two ultra-microporous frameworks with multiple coordination modes. Microporous Mesoporous Mater. 2014, 186, 137–145.

24

Li, L. B.; Yang, J. F.; Li, J. M.; Chen, Y.; Li, J. P. Separation of CO2/CH4 and CH4/N2 mixtures by M/DOBDC: A detailed dynamic comparison with MIL-100(Cr) and activated carbon. Microporous Mesoporous Mater. 2014, 198, 236–246.

25

Saha, D.; Bao, Z. B.; Jia, F.; Deng, S. G. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ. Sci. Technol. 2010, 44, 1820–1826.

26

Sholl, D. S. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

27

Taddei, M.; Petit, C. Engineering metal-organic frameworks for adsorption-based gas separations: From process to atomic scale. Mol. Syst. Des. Eng. 2021, 6, 841–875.

28

Wang, H.; Luo, D. W.; Velasco, E.; Yu, L.; Li, J. Separation of alkane and alkene mixtures by metal-organic frameworks. J. Mater. Chem. A 2021, 9, 20874–20896.

29

Lin, R. B.; Xiang, S. C.; Zhou, W.; Chen, B. L. Microporous metal-organic framework materials for gas separation. Chem 2020, 6, 337–363.

30

Brunet, P.; Simard, M.; Wuest, J. D. Molecular tectonics. Porous hydrogen-bonded networks with unprecedented structural integrity. J. Am. Chem. Soc. 1997, 119, 2737–2738.

31

Wang, B.; Lin, R. B.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Hydrogen-bonded organic frameworks as a tunable platform for functional materials. J. Am. Chem. Soc. 2020, 142, 14399–14416.

32

Cooper, A. I. Tectonic shifts in framework chemistry. Nat. Chem. 2021, 13, 620–621.

33

Suzuki, Y.; Gutiérrez, M.; Tanaka, S.; Gomez, E.; Tohnai, N.; Yasuda, N.; Matubayasi, N.; Douhal, A.; Hisaki, I. Construction of isostructural hydrogen-bonded organic frameworks: Limitations and possibilities of pore expansion. Chem. Sci. 2021, 12, 9607–9618.

34

Yusov, A.; Dillon, A. M.; Ward, M. D. Hydrogen bonded frameworks: Smart materials used smartly. Mol. Syst. Des. Eng. 2021, 6, 756–778.

35

Yang, J. Y.; Wang, J. K.; Hou, B. H.; Huang, X.; Wang, T.; Bao, Y.; Hao, H. X. Porous hydrogen-bonded organic frameworks (HOFs): From design to potential applications. Chem. Eng. J. 2020, 399, 125873.

36

Lin, R. B.; He, Y. B.; Li, P.; Wang, H. L.; Zhou, W.; Chen, B. L. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 2019, 48, 1362–1389.

37

Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.

38

Zhang, X.; Wang, J. X.; Li, L. B.; Pei, J. Y.; Krishna, R.; Wu, H.; Zhou, W.; Qian, G. D.; Chen, B. L.; Li, B. A rod-packing hydrogen-bonded organic framework with suitable pore confinement for benchmark ethane/ethylene separation. Angew. Chem. 2021, 133, 10392–10398.

39

Qian, Q. L.; Gu, X. W.; Pei, J. Y.; Wen, H. M.; Wu, H.; Zhou, W.; Li, B.; Qian, G. D. A novel anion-pillared metal-organic framework for highly efficient separation of acetylene from ethylene and carbon dioxide. J. Mater. Chem. A 2021, 9, 9248–9255.

40

Xu, G. H.; Li, B.; Wu, H.; Zhou, W.; Chen, B. L. Construction of ntt-type metal-organic framework from C2-symmetry hexacarboxylate linker for enhanced methane storage. Cryst. Growth Des. 2017, 17, 4795–4800.

41

Liu, Y.; Wu, H.; Guo, L.; Zhou, W.; Zhang, Z.; Yang, Q.; Yang, Y.; Ren, Q.; Bao, Z. Hydrogen-bonded metal-nucleobase frameworks for efficient separation of xenon and krypton. Angew. Chem., Int. Ed. 2022, 61, e202117609.

42

Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 2012, 149, 134–141.

43

Hosseinpour, S.; Fatemi, S.; Mortazavi, Y.; Gholamhoseini, M.; Ravanchi, M. T. Performance of CaX zeolite for separation of C2H6, C2H4, and CH4 by adsorption process; capacity, selectivity, and dynamic adsorption measurements. Sep. Sci. Technol. 2010, 46, 349–355.

44

Magnowski, N. B. K.; Avila, A. M.; Lin, C. C. H.; Shi, M.; Kuznicki, S. M. Extraction of ethane from natural gas by adsorption on modified ETS-10. Chem. Eng. Sci. 2011, 66, 1697–1701.

45

Yuan, Y. N.; Wu, H. X.; Xu, Y. Z.; Lv, D. F.; Tu, S.; Wu, Y.; Li, Z.; Xia, Q. B. Selective extraction of methane from C1/C2/C3 on moisture-resistant MIL-142A with interpenetrated networks. Chem. Eng. J. 2020, 395, 125057.

46

Wang, B.; Lv, X. L.; Lv, J.; Ma, L.; Lin, R. B.; Cui, H.; Zhang, J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. A novel mesoporous hydrogen-bonded organic framework with high porosity and stability. Chem. Commun. 2020, 56, 66–69.

47

Zhang, Y. B.; Yang, L. F.; Wang, L. Y.; Cui, X. L.; Xing, H. B. Pillar iodination in functional boron cage hybrid supramolecular frameworks for high performance separation of light hydrocarbons. J. Mater. Chem. A 2019, 7, 27560–27566.

48

Shi, R. F.; Lv, D. F.; Chen, Y. W.; Wu, H. X.; Liu, B. Y.; Xia, Q. B.; Li, Z. Highly selective adsorption separation of light hydrocarbons with a porphyrinic zirconium metal-organic framework PCN-224. Sep. Purif. Technol. 2018, 207, 262–268.

49

Jia, J. T. ; Wang, L. ; Sun, F. X. ; Jing, X. F. ; Bian, Z. ; Gao, L. X. ; Krishna, R. ; Zhu, G. S. The adsorption and simulated separation of light hydrocarbons in isoreticular metal-organic frameworks based on dendritic ligands with different aliphatic side chains. Chem.—Eur. J. 2014, 20, 9073–9080.

50

He, Y. B.; Zhang, Z. J.; Xiang, S. C.; Fronczek, F. R.; Krishna, R.; Chen, B. L. A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem. Commun. 2012, 48, 6493–6495.

51

Zheng, F.; Chen, L. H.; Chen, R. D.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Su, B. G.; Ren, Q. L.; Bao, Z. B. A robust two-dimensional layered metal-organic framework for efficient separation of methane from nitrogen. Sep. Purif. Technol. 2022, 281, 119911.

52

Liu, B.; Smit, B. Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs. J. Phys. Chem. C 2010, 114, 8515–8522.

53

Chang, M.; Zhao, Y. J.; Yang, Q. Y.; Liu, D. H. Microporous metal-organic frameworks with hydrophilic and hydrophobic pores for efficient separation of CH4/N2 mixture. ACS Omega 2019, 4, 14511–14516.

54

Myers, A. L.; Prausnitz, J. M. Thermodynamics of mixed-gas adsorption. AIChE J. 1965, 11, 121–127.

55

Czepirski, L. JagieŁŁo, J. Virial-type thermal equation of gas–solid adsorption. Chem. Eng. Sci. 1989, 44, 797–801.

56

Krishna, R. Evaluation of procedures for estimation of the isosteric heat of adsorption in microporous materials. Chem. Eng. Sci. 2015, 123, 191–196.

57

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using castep. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.

58

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

59

Tkatchenko, A.; Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005.

Nano Research
Pages 7695-7702
Cite this article:
Liu Y, Xu Q, Chen L, et al. Hydrogen-bonded metal-nucleobase frameworks for highly selective capture of ethane/propane from methane and methane/nitrogen separation. Nano Research, 2022, 15(8): 7695-7702. https://doi.org/10.1007/s12274-022-4352-0
Topics:

806

Views

21

Crossref

19

Web of Science

19

Scopus

3

CSCD

Altmetrics

Received: 16 February 2022
Revised: 18 March 2022
Accepted: 22 March 2022
Published: 02 May 2022
© Tsinghua University Press 2022
Return