AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly impermeable and flexible silica encapsulation films synthesized by sol–gel process

Si-Hoon Kim1,2Gyeong-Seok Hwang2Donghwan Koo2Dong-Hyun Seo1Ye-Pil Kwon1Hansuek Lee3Hyesung Park2,4( )Eun-chae Jeon1( )Ju-Young Kim2,4( )
School of Materials Science and Engineering, University of Ulsan, Techno saneop-ro 55beon-gil 12, Ulsan 44776, Republic of Korea
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Deajeon 34141, Republic of Korea
Graduate School of Semiconductor Materials and Devices, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
Show Author Information

Graphical Abstract

Silica thin films synthesized sol–gel process are proposed as flexible encapsulation materials. A sol–gel process provides a dense and stable amorphous silica structure, yielding an extremely high elastic deformation limit and extremely low water vapor transmission rate.

Abstract

Silica thin films synthesized sol–gel process are proposed as flexible encapsulation materials. A sol–gel process provides a dense and stable amorphous silica structure, yielding an extremely high elastic deformation limit of 4.9% and extremely low water vapor transmission rate (WVTR) of 2.90 × 10−4 g/(m2∙day) at 60 °C and relative humidity of 85%. The WVTR is not degraded by cyclic bending deformations for the bending radius corresponding to a tensile strain of 3.3% in the silica encapsulation film, implying that the silica thin film is robust against the formation of pinhole-type defects by cyclic bending deformations. Flexible organic solar cells encapsulated with the silica films operate without degradation in power conversion efficiency for 50,000 bending cycles for a bending radius of 6 mm.

Electronic Supplementary Material

Download File(s)
12274_2022_4356_MOESM1_ESM.pdf (1 MB)

References

1

Aziz, H.; Popovic, Z.; Tripp, C. P.; Hu, N. X.; Hor, A. M.; Xu, G. Degradation processes at the cathode/organic interface in organic light emitting devices with Mg: Ag cathodes. Appl. Phys. Lett. 1998, 72, 2642–2644.

2

McElvain, J.; Antoniadis, H.; Hueschen, M. R.; Miller, J. N.; Roitman, D. M.; Sheats, J. R.; Moon, R. L. Formation and growth of black spots in organic light-emitting diodes. J. Appl. Phys. 1996, 80, 6002–6007.

3

Schaer, M.; Nuesch, F.; Berner, D.; Leo, W.; Zuppiroli, L. Water vapor and oxygen degradation mechanisms in organic light emitting diodes. Adv. Funct. Mater. 2001, 11, 116–121.

4

Dong, X.; Fang, X.; Lv, M. H.; Lin, B. C.; Zhang, S.; Ding, J. N.; Yuan, N. Y. Improvement of the humidity stability of organic-inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J. Mater. Chem. A 2015, 3, 5360–5367.

5

Wang, C. C.; Ecker, B. R.; Wei, H. T.; Huang, J. S.; Gao, Y. L. Environmental surface stability of the MAPbBr3 single crystal. J. Phys. Chem. C 2018, 122, 3513–3522.

6

Berhe, T. A.; Su, W. N.; Chen, C. H.; Pan, C. J.; Cheng, J. H.; Chen, H. M.; Tsai, M. C.; Chen, L. Y.; Dubale, A. A.; Hwang, B. J. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci. 2016, 9, 323–356.

7

Dennler, G.; Lungenschmied, C.; Neugebauer, H.; Sariciftci, N. S.; Labouret, A. Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation, and integration. J. Mater. Res. 2005, 20, 3224–3233.

8

Kempe, M. D. Modeling of rates of moisture ingress into photovoltaic modules. Sol. Energy Mater. Sol. Cells 2006, 90, 2720–2738.

9

Lewis, J. S.; Weaver, M. S. Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 45–57.

10

Woo, J. H.; Koo, D.; Kim, N. H.; Kim, H.; Song, M. H.; Park, H.; Kim, J. Y. Amorphous alumina film robust under cyclic deformation: A highly impermeable and a highly flexible encapsulation material. ACS Appl. Mater. Interfaces 2021, 13, 46894–46901.

11

Kim, N. H.; Hwang, G. S.; Kim, H.; Kim, S. H.; Woo, J. H.; Song, M. H.; Kim, J. Y. Enhanced biaxial stretchability of wrinkled SiO2 thin films for stretchable encapsulation. Scr. Mater. 2022, 207, 114280.

12

Yoo, J. S.; Han, G. S.; Lee, S.; Kim, M. C.; Choi, M.; Jung, H. S.; Lee, J. K. Dual function of a high-contrast hydrophobic–hydrophilic coating for enhanced stability of perovskite solar cells in extremely humid environments. Nano Res. 2017, 10, 3885–3895.

13

Kang, K. S.; Jeong, S. Y.; Jeong, E. G.; Choi, K. C. Reliable high temperature, high humidity flexible thin film encapsulation using Al2O3/MgO nanolaminates for flexible oleds. Nano Res. 2020, 13, 2716–2725.

14

Chen, Z. N.; Su, Q.; Qin, Z. Y.; Chen, S. M. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res. 2021, 14, 320–327.

15

Tropsha, Y. G.; Harvey, N. G. Activated rate theory treatment of oxygen and water transport through silicon oxide/poly(ethylene terephthalate) composite barrier structures. J. Phys. Chem. B 1997, 101, 2259–2266.

16

Sun, L. N.; Kurosawa, Y.; Ito, H.; Makishima, Y.; Kita, H.; Yoshida, T.; Suzuri, Y. Solution processing of alternating PDMS/SiOx multilayer for encapsulation of organic light emitting diodes. Org. Electron. 2019, 64, 176–180.

17

Sun, L. N.; Uemura, K.; Takahashi, T.; Yoshida, T.; Suzuri, Y. Interfacial engineering in solution processing of silicon-based hybrid multilayer for high performance thin film encapsulation. ACS Appl. Mater. Interfaces 2019, 11, 43425–43432.

18

Lee, Y.; Seo, S.; Oh, I. K.; Lee, S.; Kim, H. Effects of O2 plasma treatment on moisture barrier properties of SiO2 grown by plasma-enhanced atomic layer deposition. Ceram. Int. 2019, 45, 17662–17668.

19

Li, J. H.; Song, E. M.; Chiang, C. H.; Yu, K. J.; Koo, J.; Du, H. N.; Zhong, Y. S.; Hill, M.; Wang, C.; Zhang, J. Z. et al. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology. Proc. Natl. Acad. Sci. USA 2018, 115, E9542–E9549.

20

Song, E. M.; Li, R.; Jin, X.; Du, H. N.; Huang, Y. M.; Zhang, J. Z.; Xia, Y.; Fang, H.; Lee, Y. K.; Yu, K. J. et al. Ultrathin trilayer assemblies as long-lived barriers against water and ion penetration in flexible bioelectronic systems. ACS Nano 2018, 12, 10317–10326.

21

Li, J. H.; Li, R.; Chiang, C. H.; Zhong, Y. S.; Shen, H. X.; Song, E. M.; Hill, M.; Won, S. M.; Yu, K. J.; Baek, J. M. et al. Ultrathin, high capacitance capping layers for silicon electronics with conductive interconnects in flexible, long-lived bioimplants. Adv. Mater. Technol. 2020, 5, 1900800.

22

Kim, T. S.; Kim, H. J.; Geum, D. M.; Han, J. H.; Kim, I. S.; Hong, N.; Ryu, G. H.; Kang, J.; Choi, W. J.; Yu, K. J. Ultra-lightweight, flexible ingap/gaas tandem solar cells with a dual-function encapsulation layer. ACS Appl. Mater. Interfaces 2021, 13, 13248–13253.

23
Hench, L. L. ; Orefice, R. Sol–gel technology. In Kirk‐Othmer Encyclopedia of Chemical Technology. Kirk‐Othmer, Ed. ; New York: John Wiley & Sons, Inc. , 2000.
24

Brinker, C. J.; Scherer, G. W. Sol → gel → glass: I. Gelation and gel structure. J. Non-Crystall. Solids 1985, 70, 301–322.

25

Brinker, C. J.; Scherer, G. W.; Roth, E. P. Sol → gel→ glass: II. Physical and structural evolution during constant heating rate experiments. J. Non-Crystall. Solids 1985, 72, 345–368.

26

Scherer, G. W.; Brinker, C. J.; Roth, E. P. Sol → gel → glass: III. Viscous sintering. J. Non-Crystall. Solids 1985, 72, 369–389.

27

Kim, J.; Jang, J. H.; Kim, J. H.; Park, K.; Jang, J. S.; Park, J.; Park, N. Inorganic encapsulation method using solution-processible polysilazane for flexible solar cells. ACS Appl. Energy Mater. 2020, 3, 9257–9263.

28

Woo, J. H.; Park, S. Y.; Koo, D.; Song, M. H.; Park, H.; Kim, J. Y. Highly elastic and corrosion-resistive metallic glass thin films for flexible encapsulation. ACS Appl. Mater. Interfaces 2022, 14, 5578–5585.

29

Castro-Hermosa, S.; Top, M.; Dagar, J.; Fahlteich, J.; Brown, T. M. Quantifying performance of permeation barrier-encapsulation systems for flexible and glass-based electronics and their application to perovskite solar cells. Adv. Electron. Mater. 2019, 5, 1800978.

30

Park, M. H.; Kim, J. Y.; Han, T. H.; Kim, T. S.; Kim, H.; Lee, T. W. Flexible lamination encapsulation. Adv. Mater. 2015, 27, 4308–4314.

31

Yoshioka, T.; Ando, T.; Shikida, M.; Sato, K. Tensile testing of SiO2 and Si3N4 films carried out on a silicon chip. Sens. Actuator A Phys. 2000, 82, 291–296.

32

Tsuchiya, T.; Inoue, A.; Sakata, J. Tensile testing of insulating thin films; humidity effect on tensile strength of SiO2 films. Sens. Actuator A Phys. 2000, 82, 286–290.

33

Chu, J. K.; Zhang, D. Q. Mechanical characterization of thermal SiO2 micro-beams through tensile testing. J. Micromech. Microeng. 2009, 19, 095020.

34

Sharpe, W. N. Jr; Pulskamp, J.; Gianola, D. S.; Eberl, C.; Polcawich, R. G.; Thompson, R. J. Strain measurements of silicon dioxide microspecimens by digital imaging processing. Exp. Mech. 2007, 47, 649–658.

35

Zheng, K.; Wang, C. C.; Cheng, Y. Q.; Yue, Y. H.; Han, X. D.; Zhang, Z.; Shan, Z. W.; Mao, S. X.; Ye, M. M.; Yin, Y. D. et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 2010, 1, 24.

36

Mačković, M.; Niekiel, F.; Wondraczek, L.; Spiecker, E. Direct observation of electron-beam-induced densification and hardening of silica nanoballs by in situ transmission electron microscopy and finite element method simulations. Acta Mater. 2014, 79, 363–373.

37

Mkhoyan, K. A.; Silcox, J.; Ellison, A.; Ast, D.; Dieckmann, R. Full recovery of electron damage in glass at ambient temperatures. Phys. Rev. Lett. 2006, 96, 205506.

38

Suo, Z.; Ma, E. Y.; Gleskova, H.; Wagner, S. Mechanics of rollable and foldable film-on-foil electronics. Appl. Phys. Lett. 1999, 74, 1177–1179.

39

Reese, M. O.; Dameron, A. A.; Kempe, M. D. Quantitative calcium resistivity based method for accurate and scalable water vapor transmission rate measurement. Rev. Sci. Instrum. 2011, 82, 085101.

40

Visweswaran, B.; Mandlik, P.; Mohan, S. H.; Silvernail, J. A.; Ma, R. Q.; Sturm, J. C.; Wagner, S. Diffusion of water into permeation barrier layers. J. Vac. Sci. Technol. A 2015, 33, 031513.

41

Perkins, W. G.; Begeal, D. R. Diffusion and permeation of He, Ne, Ar, Kr, and D2 through silicon oxide thin films. J. Chem. Phys. 1971, 54, 1683–1694.

42

Welle, F.; Franz, R. Diffusion coefficients and activation energies of diffusion of low molecular weight migrants in poly(ethylene terephthalate) bottles. Polym. Test 2012, 31, 93–101.

43

Wakabayashi, H.; Tomozawa, M. Diffusion of water into silica glass at low temperature. J. Am. Ceram. Soc. 1989, 72, 1850–1855.

44
Doremus, R. H. Diffusion of Reactive Molecules in Solids and Melts; John Wiley & Sons: New York, 2001.
45

Vedam, K.; Limsuwan, P. Piezo- and elasto-optic properties of liquids under high pressure. II. Refractive index vs. density. J. Chem. Phys. 1978, 69, 4772–4778.

46

Eslava, S.; Baklanov, M. R.; Kirschhock, C. E. A.; Iacopi, F.; Aldea, S.; Maex, K.; Martens, J. A. Characterization of a molecular sieve coating using ellipsometric porosimetry. Langmuir 2007, 23, 12811–12816.

Nano Research
Pages 7476-7483
Cite this article:
Kim S-H, Hwang G-S, Koo D, et al. Highly impermeable and flexible silica encapsulation films synthesized by sol–gel process. Nano Research, 2022, 15(8): 7476-7483. https://doi.org/10.1007/s12274-022-4356-9
Topics:

1537

Views

3

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 07 February 2022
Revised: 06 March 2022
Accepted: 23 March 2022
Published: 31 May 2022
© Tsinghua University Press 2022
Return