AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management

Yali ZhangZhonglei MaKunpeng RuanJunwei Gu( )
Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an 710072, China
Show Author Information

Graphical Abstract

The flexible multifunctional Janus Ti3C2Tx-(Fe3O4/PI) composite films have excellent electromagneticinterference (EMI) shielding, electrothermal and photothermal conversion and mechanical properties.

Abstract

Flexible multifunctional polymer-based electromagnetic interference (EMI) shielding composite films have important application values in the fields of 5G communication technology, wearable electronic devices and artificial intelligence. In this work, Fe3O4/polyamic acid (PAA) nanofiber films are prepared by in-situ polymerization and electrospinning technology, and Ti3C2Tx nanosheets are deposited on the surface of the Fe3O4/PAA nanofiber films via vacuum-assisted filtration. Then, Janus Ti3C2Tx-(Fe3O4/polyimide (PI)) composite films are obtained by thermal imidization. The two sides of the Janus films exhibit completely different properties. The Fe3O4/PI side has excellent hydrophobicity and insulation property, and the Ti3C2Tx side has hydrophilicity and terrific conductivity. When the mass fraction of Ti3C2Tx is 80 wt.%, the Janus Ti3C2Tx-(Fe3O4/PI) composite film has excellent EMI shielding performances and mechanical properties, with EMI shielding effectiveness, tensile strength and Young’s modulus reaching 66 dB, 114.5 MPa and 5.8 GPa, respectively. At the same time, electromagnetic waves show different absorption shielding effectiveness (SEA) when incident from two sides of the Janus films. When the electromagnetic waves are incident from the Fe3O4/PI side, the SEA of the Janus film is 58 dB, much higher than that when the electromagnetic waves are incident from the Ti3C2Tx side (39 dB). In addition, the Ti3C2Tx side of the Janus Ti3C2Tx-(Fe3O4/PI) composite films also has excellent electrothermal and photothermal conversion performances. When the applied voltage is 4 V, the stable surface temperature reaches 108 °C; when it is irradiated by simulated sunlight with power density of 200 mW/cm2, the stable surface temperature reaches 95 °C.

Electronic Supplementary Material

Download File(s)
12274_2022_4358_MOESM1_ESM.pdf (974.9 KB)

References

1

Cheng, H. R.; Lu, Z. L.; Gao, Q. S.; Zuo, Y.; Liu, X. H.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 2021, 16, 331–340.

2

Cao, W. T.; Ma, C.; Tan, S.; Ma, M. G.; Wan, P. B.; Chen, F. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 2019, 11, 72.

3

Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 16643–16653.

4

Cheng, H. R.; Pan, Y. M.; Chen, Q.; Che, R. C.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 2021, 4, 505–513.

5

Deng, Z. M.; Tang, P. P.; Wu, X. Y.; Zhang, H. B.; Yu, Z. Z. Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 20539–20547.

6

Duan, H. J.; Zhu, H. X.; Gao, J. F.; Yan, D. X.; Dai, K.; Yang, Y. Q.; Zhao, G. Z.; Liu, Y. Q.; Li, Z. M. Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 2020, 8, 9146–9159.

7

Gao, Q. S.; Pan, Y. M.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 2021, 4, 274–285.

8

Fan, Z. M.; Wang, D. L.; Yuan, Y.; Wang, Y. S.; Cheng, Z. J.; Liu, Y. Y.; Xie, Z. M. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122696.

9

Guo, J.; Li, X.; Chen, Z. R.; Zhu, J. F.; Mai, X. M.; Wei, R. B.; Sun, K.; Liu, H.; Chen, Y. X.; Naik, N. et al. Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 108, 64–72.

10

Fan, Z. M.; He, H. Q.; Yu, J. X.; Liu, L.; Liu, Y. Y.; Xie, Z. M. Lightweight three-dimensional cellular MXene film for superior energy storage and electromagnetic interference shielding. ACS Appl. Energy Mater. 2020, 3, 8171–8178.

11

Sang, G. L.; Xu, P.; Yan, T.; Murugadoss, V.; Naik, N.; Ding, Y. S.; Guo, Z. H. Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 153.

12

Mei, J.; Ayoko, G. A.; Hu, C. F.; Sun, Z. Q. Thermal reduction of sulfur-containing MAX phase for MXene production. Chem. Eng. J. 2020, 395, 125111.

13

Li, X. L.; Yin, X. W.; Song, C. Q.; Han, M. K.; Xu, H. L.; Duan, W. Y.; Cheng, L. F.; Zhang, L. T. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 2018, 28, 1803938.

14

Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

15

Hu, D. W.; Huang, X. Y.; Li, S. T.; Jiang, P. K. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2020, 188, 107995.

16

Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

17

Jin, X. X.; Wang, J. F.; Dai, L. Z.; Liu, X. Y.; Li, L.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J.; Wu, H.; Guo, S. Y. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.

18

Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593.

19

Wei, H. W.; Wang, M. Q.; Zheng, W. H.; Jiang, Z. X.; Huang, Y. D. 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceram. Int. 2020, 46, 6199–6204.

20

Zhang, Y. L.; Wang, L.; Zhang, J. L.; Song, P.; Xiao, Z. R.; Liang, C. B.; Qiu, H.; Kong, J.; Gu, J. W. Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films. Compos. Sci. Technol. 2019, 183, 107833.

21

Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–300.

22

Kumar, P. Ultrathin 2D nanomaterials for electromagnetic interference shielding. Adv. Mater. Interfaces 2019, 6, 1901454.

23

Li, Z. Y.; Wang, Z. Y.; Lu, W. X.; Hou, B. Theoretical study of electromagnetic interference shielding of 2D MXenes films. Metals 2018, 8, 652.

24

Sun, R. H.; Zhang, H. B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807.

25

Wan, Y. J.; Li, X. M.; Zhu, P. L.; Sun, R.; Wong, C. P.; Liao, W. H. Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A:Appl. Sci. Manuf. 2020, 130, 105764.

26

Weng, G. M.; Li, J. Y.; Alhabeb, M.; Karpovich, C.; Wang, H.; Lipton, J.; Maleski, K.; Kong, J.; Shaulsky, E.; Elimelech, M. et al. Layer-by-layer assembly of cross-functional semi-transparent mxene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 2018, 28, 1803360.

27

Chen, Y. M.; Zhang, L.; Mei, C. T.; Li, Y.; Duan, G. G.; Agarwal, S.; Greiner, A.; Ma, C. X.; Jiang, S. H. Wood-inspired anisotropic cellulose nanofibril composite sponges for multifunctional applications. ACS Appl. Mater. Interfaces 2020, 12, 35513–35522.

28

Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

29

Chen, Q.; Ma, Z. W.; Wang, Z. Z.; Liu, L.; Zhu, M. H.; Lei, W. W.; Song, P. A. Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 2022, 32, 2110782.

30

Wu, Z. Y.; Li, L.; Liao, T.; Chen, X. Q.; Jiang, W.; Luo, W.; Yang, J. P.; Sun, Z. Q. Janus nanoarchitectures: From structural design to catalytic applications. Nano Today 2018, 22, 62–82.

31

Han, X. H.; Ding, S. Q.; Fan, L. W.; Zhou, Y. H.; Wang, S. R. Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators. J. Mater. Chem. A 2021, 9, 18614–18622.

32

Li, L. L.; Zhao, S.; Luo, X. J.; Zhang, H. B.; Yu, Z. Z. Smart MXene-Based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 2021, 175, 594–602.

33

An, Y. P.; Yang, J.; Yang, H. C.; Wu, M. B.; Xu, Z. K. Janus membranes with charged carbon nanotube coatings for deemulsification and separation of oil-in-water emulsions. ACS Appl. Mater. Interfaces 2018, 10, 9832–9840.

34

Ma, Q. L.; Wang, J. X.; Dong, X. T.; Yu, W. S.; Liu, G. X. Flexible Janus nanoribbons array: A new strategy to achieve excellent electrically conductive anisotropy, magnetism, and photoluminescence. Adv. Funct. Mater. 2015, 25, 2436–2443.

35

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

36

Lipton, J.; Röhr, J. A.; Dang, V.; Goad, A.; Maleski, K.; Lavini, F.; Han, M. K.; Tsai, E. H. R.; Weng, G. M.; Kong, J. et al. Scalable, highly conductive, and micropatternable MXene films for enhanced electromagnetic interference shielding. Matter 2020, 3, 546–557.

37

Liu, F.; Li, Y. C.; Hao, S.; Cheng, Y.; Zhan, Y. H.; Zhang, C. M.; Meng, Y. Y.; Xie, Q.; Xia, H. S. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohyd. Polym. 2020, 243, 116467.

38

Liu, H. B.; Fu, R. L.; Su, X. Q.; Wu, B. Y.; Wang, H.; Xu, Y.; Liu, X. H. Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application. Compos. Commun. 2021, 23, 100593.

39

Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

40

Liu, L. X.; Chen, W.; Zhang, H. B.; Wang, Q. W.; Guan, F. L.; Yu, Z. Z. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.

41

Wu, X. Y.; Han, B. Y.; Zhang, H. B.; Xie, X.; Tu, T. X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z. Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622.

42

Wu, Z. Y.; Li, C. R.; Li, Z.; Feng, K.; Cai, M. J.; Zhang, D. K.; Wang, S. H.; Chu, M. Y.; Zhang, C. C.; Shen, J. H. et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano 2021, 15, 5696–5705.

43

Wu, Z. T.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Yang, Q. H. The assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077.

44

Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 2022, 14, 26.

45

Xu, J. L.; Zhang, X.; Miao, Y. X.; Wen, M. X.; Yan, W. J.; Lu, P.; Wang, Z. R.; Sun, Q. In-situ plantation of Fe3O4@C nanoparticles on reduced graphene oxide nanosheet as high-performance anode for lithium/sodium-ion batteries. Appl. Surf. Sci. 2021, 546, 149163.

46

Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

47

Ling, J. Q.; Zhai, W. T.; Feng, W. W.; Shen, B.; Zhang, J. F.; Zheng, W. G. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677–2684.

48

Liu, R. T.; Miao, M.; Li, Y. H.; Zhang, J. F.; Cao, S. M.; Feng, X. Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 44787–44795.

49

Rajavel, K.; Yu, X. C.; Zhu, P. L.; Hu, Y. G.; Sun, R.; Wong, C. Exfoliation and defect control of two-dimensional few-layer MXene Ti3C2Tx for electromagnetic interference shielding coatings. ACS Appl. Mater. Interfaces 2020, 12, 49737–49747.

50

Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M. K.; Hong, S. M.; Han, M. K.; Gogotsi, Y.; Koo, C. M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 38046–38054.

51

Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A:Appl. Sci. Manuf. 2020, 128, 105670.

52

Shen, B.; Zhai, W. T.; Tao, M. M.; Ling, J. Q.; Zheng, W. G. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 2013, 5, 11383–11391.

53

Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

54

Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

55

Luo, J. Q.; Zhao, S.; Zhang, H. B.; Deng, Z. M.; Li, L. L.; Yu, Z. Z. Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2019, 182, 107754.

56

Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

57

Liu, P. J.; Ng, V. M. H.; Yao, Z. J.; Zhou, J. T.; Kong, L. B. Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance. Mater. Lett. 2018, 229, 286–289.

58

Liang, C. Y.; Hamidinejad, M.; Ma, L.; Wang, Z. J.; Park, C. B. Lightweight and flexible graphene/SiC-nanowires/poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. Carbon 2020, 156, 58–66.

59

Wang, Q. W.; Zhang, H. B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L. X.; Yang, R.; Koratkar, N.; Yu, Z. Z. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 2019, 29, 1806819.

60

Li, Z. W.; Lin, Z. J.; Han, M. S.; Mu, Y. B.; Yu, P. P.; Zhang, Y. L.; Yu, J. Flexible electrospun carbon nanofibers/silicone composite films for electromagnetic interference shielding, electrothermal and photothermal applications. Chem. Eng. J. 2021, 420, 129826.

61

Zhou, Z. H.; Song, Q. C.; Huang, B. X.; Feng, S. Y.; Lu, C. H. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 2021, 15, 12405–12417.

62

Ruan, K. P.; Guo, Y. Q.; Lu, C. Y.; Shi, X. T.; Ma, T. B.; Zhang, Y. L.; Kong, J.; Gu, J. W. Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 2021, 8438614.

63

Sobolčiak, P.; Ali, A.; Hassan, M. K.; Helal, M. I.; Tanvir, A.; Popelka, A.; Al-Maadeed, M. A.; Krupa, I.; Mahmoud, K. A. 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties. PLoS One 2017, 12, e0183705.

Nano Research
Pages 5601-5609
Cite this article:
Zhang Y, Ma Z, Ruan K, et al. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Research, 2022, 15(6): 5601-5609. https://doi.org/10.1007/s12274-022-4358-7
Topics:
Part of a topical collection:

1885

Views

239

Crossref

242

Web of Science

245

Scopus

12

CSCD

Altmetrics

Received: 16 March 2022
Revised: 23 March 2022
Accepted: 24 March 2022
Published: 18 April 2022
© Tsinghua University Press 2022
Return