AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy

Yajun Niu1,2Zhaozhe Yu1( )Yongjian Zhou2Jiawen Tang2Maoxin Li2Zechao Zhuang3Yan Yang4Xiao Huang2( )Bingbing Tian2( )
Guangxi Key Laboratory of Manufacturing Systems and Advanced Manufacturing Technology, Guilin University of Electronic Technology, Guilin 541004, China
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China
Show Author Information

Graphical Abstract

The Li phosphorus oxynitride (LiPON) layer deposited on the surface of non-stable SE in-situ reacts with Li to form a lithiophilic, electronically insulating, and ionic conductive layer. This layer effectively inhibits the reduction of non-stable solid electrolyte (SE) against Li, thus improving interfacial stability and suppressing the formation of Li dendrites.

Abstract

Solid-state batteries based on Li and nonflammable solid-state electrolytes (SSEs) have aroused the attention of numerous researchers because of their absolute safety and potentially high energy density. Most SSEs after coming into contact with Li are reduced, which leads to high interfacial charge-transfer impedance and dendrites formation. In this study, an “interlayer-Li pre-reduction strategy” was proposed to solve the above problem of reduction. An intermediate layer was introduced between solid electrolyte and Li, and it reacted with Li to produce a stable and ion-conductive interphase. Cubic garnet-type Nb-doped Li7La3Zr2O12 (Nb-LLZO) was selected as an example solid electrolyte since it is characterized by high ionic conductivity, feasible preparation under ambient conditions, as well as low cost. The high impedance arising from the reduction at the Nb-LLZO|Li interface has limited its application. In this paper, a nano-scale Li phosphorus oxynitride (LiPON) layer was deposited on the Nb-LLZO pellets through radio frequency (RF) magnetron sputtering, which pre-reacted with Li in-situ to produce a lithiophilic, electronically insulating, and ionic conductive interphase. The produced interphase significantly inhibited the reduction of Nb5+ against Li and the formation and propagation of Li dendrites. It is noteworthy that Li|LiPON|Nb-LLZO|LiPON|Li cells stably cycled for over 2,000 h without any short circuit. This study emphasizes and demonstrates the significance of the pre-conversion of modification layer between unstable SSE and Li metal to improve interfacial stability.

Electronic Supplementary Material

Download File(s)
12274_2022_4362_MOESM1_ESM.pdf (2.2 MB)

References

1

Chen, Y.; Kang, Q.; Jiang, P. K.; Huang, X. Y. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Res. 2021, 14, 2424–2431.

2

Wang, J.; Yin, Y. B.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Zhang, X. B. Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries. Nano Res. 2018, 11, 3434–3441.

3

Yang, C. P.; Liu, B. Y.; Jiang, F.; Zhang, Y.; Xie, H.; Hitz, E.; Hu, L. B. Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Res. 2017, 10, 4256–4265.

4
Zhou, Z. H. ; Sun, T. ; Cui, J. ; Shen, X. ; Shi, C. A. ; Cao, S. ; Zhao, J. B. A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Res., in press, https://doi.org/10.1007/s12274-021-3683-6.
5

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

6

Xiao, Y. H.; Wang, Y.; Bo, S. H.; Kim, J. C.; Miara, L. J.; Ceder, G. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 2020, 5, 105–126.

7

Kwon, W. J.; Kim, H.; Jung, K. N.; Cho, W.; Kim, S. H.; Lee, J. W.; Park, M. S. Enhanced Li+ conduction in perovskite Li3xLa2/3−x1/3−2xTiO3 solid-electrolytes via microstructural engineering. J. Mater. Chem. A 2017, 5, 6257–6262.

8

Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem., Int. Ed. 2007, 46, 7778–7781.

9

Yu, C.; Zhao, F. P.; Luo, J.; Zhang, L.; Sun, X. L. Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy 2021, 83, 105858.

10

Peng, L. F.; Yu, C.; Zhang, Z. Q.; Ren, H. T.; Zhang, J. Z.; He, Z. Y.; Yu, M.; Zhang, L.; Cheng, S. J.; Xie, J. Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability. Chem. Eng. J. 2022, 430, 132896.

11

Lacivita, V.; Westover, A. S.; Kercher, A.; Phillip, N. D.; Yang, G.; Veith, G.; Ceder, G.; Dudney, N. J. Resolving the amorphous structure of lithium phosphorus oxynitride (Lipon). J. Am. Chem. Soc. 2018, 140, 11029–11038.

12

Liu, Y. J.; Li, C.; Li, B. J.; Song, H. C.; Cheng, Z.; Chen, M. R.; He, P.; Zhou, H. S. Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries. Adv. Energy Mater. 2018, 8, 1702374.

13

Hou, G. M.; Ma, X. X.; Sun, Q. D.; Ai, Q.; Xu, X. Y.; Chen, L. N.; Li, D. P.; Chen, J. H.; Zhong, H.; Li, Y. et al. Lithium dendrite suppression and enhanced interfacial compatibility enabled by an ex situ SEI on Li anode for LAGP-based all-solid-state batteries. ACS Appl. Mater. Interfaces 2018, 10, 18610–18618.

14

Cheng, Q.; Li, A. J.; Li, N.; Li, S.; Zangiabadi, A.; Li, T. D.; Huang, W. L.; Li, A. C.; Jin, T. W.; Song, Q. Q. et al. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating. Joule 2019, 3, 1510–1522.

15

Peng, L. F.; Ren, H. T.; Zhang, J. Z.; Chen, S. Q.; Yu, C.; Miao, X. F.; Zhang, Z. Q.; He, Z. Y.; Yu, M.; Zhang, L. et al. LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures. Energy Storage Mater. 2021, 43, 53–61.

16

Wenzel, S.; Randau, S.; Leichtweiß, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 2016, 28, 2400–2407.

17

Zhu, Y. Z.; He, X. F.; Mo, Y. F. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 2016, 4, 3253–3266.

18

Hood, Z. D.; Chen, X.; Sacci, R. L.; Liu, X. M.; Veith, G. M.; Mo, Y. F.; Niu, J. J.; Dudney, N. J.; Chi, M. F. Elucidating interfacial stability between lithium metal anode and Li phosphorus oxynitride via in situ electron microscopy. Nano Lett. 2021, 21, 151–157.

19

Li, J. C.; Ma, C.; Chi, M. F.; Liang, C. D.; Dudney, N. J. Solid electrolyte: The key for high-voltage lithium batteries. Adv. Energy Mater. 2015, 5, 1401408.

20

Thangadurai, V.; Narayanan, S.; Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem. Soc. Rev. 2014, 43, 4714–4727.

21

Wolfenstine, J.; Allen, J. L.; Read, J.; Sakamoto, J. Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature. J. Mater. Sci. 2013, 48, 5846–5851.

22

Bernstein, N.; Johannes, M. D.; Hoang, K. Origin of the structural phase transition in Li7La3Zr2O12. Phys. Rev. Lett. 2012, 109, 205702.

23

Afyon, S.; Krumeich, F.; Rupp, J. L. M. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries. J. Mater. Chem. A 2015, 3, 18636–18648.

24

Su, J. M.; Huang, X.; Song, Z.; Xiu, T. P.; Badding, M. E.; Jin, J.; Wen, Z. Y. Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal. Ceram. Int. 2019, 45, 14991–14996.

25

Krauskopf, T.; Hartmann, H.; Zeier, W. G.; Janek, J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries-an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 2019, 11, 14463–14477.

26

Huang, X.; Lu, Y.; Song, Z.; Rui, K.; Wang, Q. S.; Xiu, T. P.; Badding, M. E.; Wen, Z. Y. Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte. Energy Storage Mater. 2019, 22, 207–217.

27

Zhuang, L. B.; Huang, X.; Lu, Y.; Tang, J. W.; Zhou, Y. J.; Ao, X.; Yang, Y.; Tian, B. B. Phase transformation and grain-boundary segregation in Al-doped Li7La3Zr2O12 ceramics. Ceram. Int. 2021, 47, 22768–22775.

28

Huang, X.; Song, Z.; Xiu, T. P.; Badding, M. E.; Wen, Z. Y. Sintering, micro-structure and Li+ conductivity of Li7−xLa3Zr2−xNbxO12/MgO (x = 0.2–0.7) Li-garnet composite ceramics. Ceram. Int. 2019, 45, 56–63.

29

Kim, Y.; Yoo, A.; Schmidt, R.; Sharafi, A.; Lee, H.; Wolfenstine, J.; Sakamoto, J. Electrochemical stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against metallic lithium. Front. Energy Res. 2016, 4, 20.

30

Zhu, Y. S.; Connell, J. G.; Tepavcevic, S.; Zapol, P.; Garcia-Mendez, R.; Taylor, N. J.; Sakamoto, J.; Ingram, B. J.; Curtiss, L. A.; Freeland, J. W. et al. Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal. Adv. Energy Mater. 2019, 9, 1803440.

31

Cai, M. L.; Lu, Y.; Su, J. M.; Ruan, Y. D.; Chen, C. H.; Chowdari, B. V. R.; Wen, Z. Y. In situ lithiophilic layer from H+/Li+ exchange on garnet surface for the stable lithium-solid electrolyte interface. ACS Appl. Mater. Interfaces 2019, 11, 35030–35038.

32

Wang, C. W.; Gong, Y. H.; Liu, B. Y.; Fu, K.; Yao, Y. G.; Hitz, E.; Li, Y. J.; Dai, J. Q.; Xu, S. M.; Luo, W. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017, 17, 565–571.

33

Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rubloff, G. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572–579.

34

Ruan, Y. D.; Lu, Y.; Li, Y. P.; Zheng, C. J.; Su, J. M.; Jin, J.; Xiu, T. P.; Song, Z.; Badding, M. E.; Wen, Z. Y. A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries. Adv. Funct. Mater. 2020, 31, 2007815.

35

Huang, Y.; Chen, B.; Duan, J.; Yang, F.; Wang, T. R.; Wang, Z. F.; Yang, W. J.; Hu, C. C.; Luo, W.; Huang, Y. H. Graphitic carbon nitride (g-C3N4): An interface enabler for solid-state lithium metal batteries. Angew. Chem., Int. Ed. 2020, 59, 3699–3704.

36

Put, B.; Vereecken, P. M.; Meersschaut, J.; Sepúlveda, A.; Stesmans, A. Electrical characterization of ultrathin RF-sputtered LiPON layers for nanoscale batteries. ACS Appl. Mater. Interfaces 2016, 8, 7060–7069.

37

Cherkashinin, G.; Yu, Z. H.; Eilhardt, R.; Alff, L.; Jaegermann, W. The effect of interfacial charge distribution on chemical compatibility and stability of the high voltage electrodes (LiCoPO4, LiNiPO4)/solid electrolyte (LiPON) interface. Adv. Mater. Interfaces 2020, 7, 2000276.

38

Dudney, N. J. Solid-state thin-film rechargeable batteries. Mater. Sci. Eng. B 2005, 116, 245–249.

39

Huang, X.; Liu, C.; Lu, Y.; Xiu, T.; Jin, J.; Badding, M. E.; Wen, Z. Y. A Li-garnet composite ceramic electrolyte and its solid-state Li-S battery. J. Power Sources 2018, 382, 190–197.

40

Huang, X.; Shen, C.; Rui, K.; Jin, J.; Wu, M. F.; Wu, X. W.; Wen, Z. Y. Influence of La2Zr2O7 additive on densification and Li+ conductivity for Ta-doped Li7La3Zr2O12 garnet. JOM 2016, 68, 2593–2600.

41

Zheng, H. P.; Wu, S. P.; Tian, R.; Xu, Z. M.; Zhu, H.; Duan, H. N.; Liu, H. Z. Intrinsic lithiophilicity of Li-garnet electrolytes enabling high-rate lithium cycling. Adv. Funct. Mater. 2020, 30, 1906189.

42

Li, W. W.; Zhang, S. P.; Wang, B. R.; Gu, S.; Xu, D.; Wang, J. N.; Chen, C. H.; Wen, Z. Y. Nanoporous adsorption effect on alteration of the Li+ diffusion pathway by a highly ordered porous electrolyte additive for high-rate all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 2018, 10, 23874–23882.

43

Wang, C. H.; Bai, G. L.; Yang, Y. F. Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 2019, 12, 217–223.

44

Zhang, Y. X.; Chen, Y.; Yan, M. F.; Chen, F. L. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J. Power Sources 2015, 283, 464–477.

45

Lu, Y.; Zhao, C. Z.; Zhang, R.; Yuan, H.; Hou, L. P.; Fu, Z. H.; Chen, X.; Huang, J. Q.; Zhang, Q. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci. Adv. 2021, 7, eabi5520.

46

Lu, Y.; Zhao, C. Z.; Yuan, H.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. Critical current density in solid-state lithium metal batteries: Mechanism, influences, and strategies. Adv. Funct. Mater. 2021, 31, 2009925.

47

Fleutot, B.; Pecquenard, B.; Martinez, H.; Letellier, M.; Levasseur, A. Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance. Solid State Ionics 2011, 186, 29–36.

48

Ko, J.; Yoon, Y. S. Influence of process conditions on structural and electrochemical properties of lithium phosphorus oxynitride thin films. Ceram. Int. 2020, 46, 20623–20632.

49

Li, Y. B.; Sun, Y. M.; Pei, A.; Chen, K. F.; Vailionis, A.; Li, Y. Z.; Zheng, G. Y.; Sun, J.; Cui, Y. Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS Cent. Sci. 2018, 4, 97–104.

50

Li, W.; Wu, G. T.; Araújo, C. M.; Scheicher, R. H.; Blomqvist, A.; Ahuja, R.; Xiong, Z. T.; Feng, Y. P.; Chen, P. Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N. Energy Environ. Sci. 2010, 3, 1524–1530.

51

Wood, K. N.; Steirer, K. X.; Hafner, S. E.; Ban, C. M.; Santhanagopalan, S.; Lee, S. H.; Teeter, G. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes. Nat. Commun. 2018, 9, 2490.

52

Nazri, G. Preparation, structure and ionic conductivity of lithium lhosphide. Solid State Ionics 1989, 34, 97–102.

53

Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

54

Bao, W. Z.; Liu, L.; Wang, C. Y.; Choi, S.; Wang, D.; Wang, G. X. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702485.

55

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

56

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

57

Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

58

Lu, Y.; Huang, X.; Song, Z.; Rui, K.; Wang, Q. S.; Gu, S.; Yang, J. H.; Xiu, T.; Badding, M. E.; Wen, Z. Y. Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces. Energy Storage Mater. 2018, 15, 282–290.

59

Yang, L.; Huang, X.; Zou, C. F.; Tao, X. Y.; Liu, L.; Luo, K. L.; Zeng, P.; Dai, Q. S.; Li, Y. F.; Yi, L. G. et al. Rapid preparation and performances of garnet electrolyte with sintering aids for solid-state Li-S battery. Ceram. Int. 2021, 47, 18196–18204.

Nano Research
Pages 7180-7189
Cite this article:
Niu Y, Yu Z, Zhou Y, et al. Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy. Nano Research, 2022, 15(8): 7180-7189. https://doi.org/10.1007/s12274-022-4362-y
Topics:

1050

Views

38

Crossref

38

Web of Science

35

Scopus

3

CSCD

Altmetrics

Received: 24 February 2022
Revised: 17 March 2022
Accepted: 24 March 2022
Published: 19 May 2022
© Tsinghua University Press 2022
Return