AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bacteria-assisted delivery and oxygen production of nano-enzyme for potent radioimmunotherapy of cancer

Jing Ni1,§Hailin Zhou1,§Jingyu Gu2Xinpei Liu2Jie Chen3( )Xuan Yi2( )Kai Yang1( )
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, China
Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215123, China

§ Jing Ni and Hailin Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, we used neutrophil-targeting denature albumin to coat catalase protein and then deliver it to the bacteria-infected tumors, reliving the tumor hypoxia under the excess hydrogen peroxide (H2O2) generated by neutrophil for enhanced radiotherapy. Moreover, bacteria, O2 together with X-ray irradiation could improve the immune microenvironment of tumor, resulting in a perfect immunotherapy.

Abstract

Tumor-targeting attenuated Salmonella could induce certain antitumor therapeutic effect through its proliferation characteristic and the consequent activated immune response, while host defense cells represented by neutrophils would trap and eliminate these invading bacteria via producing excess hydrogen peroxide (H2O2)-including reactive oxygen species in the bacteria-infected tumor, thereby impairing the efficacy of the bacteria treatment of tumor. Herein, we attempt to combine bacteria treatment and oxygen-dependent radioimmunotherapy of tumor through injection of neutrophil-targeted nano-catalase into the bacteria-treated mice for perfect tumor treatment outcome. Denatured albumin is used to coat catalase and deliver it to the neutrophils infiltrated in bacteria-infected tumor tissue. Taking advantage of the generating H2O2 by neutrophils, easily-diffused oxygen is produced and spread the whole tumor under the catalysis of nano-enzyme, leading to enhanced radiotherapy of hypoxic tumor cells. Moreover, the optimized tumor microenvironment, synergistically caused by potent immune-stimulation of bacteria, generating oxygen and tumor radiotherapy, would boost the antitumor immunity. This novel combination therapy strategy holds great promise to provide new ideas for future clinical cancer treatment.

Electronic Supplementary Material

Download File(s)
12274_2022_4369_MOESM1_ESM.pdf (1.7 MB)

References

1

Seong, S. Y.; Matzinger, P. Hydrophobicity: An ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 2004, 4, 469–478.

2

Amarante-Mendes, G. P.; Adjemian, S.; Branco, L. M.; Zanetti, L. C.; Weinlich, R.; Bortoluci, K. R. Pattern recognition receptors and the host cell death molecular machinery. Front. Immunol. 2018, 9, 2379.

3

De Lorenzo, G.; Ferrari, S.; Cervone, F.; Okun, E. Extracellular DAMPs in plants and mammals: Immunity, tissue damage and repair. Trends Immunol. 2018, 39, 937–950.

4

Kono, H.; Rock, K. L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 2008, 8, 279–289.

5

Hernandez, C.; Huebener, P.; Schwabe, R. F. Damage-associated molecular patterns in cancer: A double-edged sword. Oncogene 2016, 35, 5931–5941.

6

Gontero, P.; Bohle, A.; Malmstrom, P. U.; O’Donnell, M. A.; Oderda, M.; Sylvester, R.; Witjes, F. The role of bacillus Calmette-Guérin in the treatment of non-muscle-invasive bladder cancer. Eur. Urol. 2010, 57, 410–429.

7

Raja, J.; Ludwig, J. M.; Gettinger, S. N.; Schalper, K. A.; Kim, H. S. Oncolytic virus immunotherapy: Future prospects for oncology. J. Immunother. Cancer 2018, 6, 140.

8

Yang, Z. J.; Zhu, Y. J.; Dong, Z. L.; Hao, Y.; Wang, C. J.; Li, Q. G.; Wu, Y. M.; Feng, L. Z.; Liu, Z. Engineering bioluminescent bacteria to boost photodynamic therapy and systemic anti-tumor immunity for synergistic cancer treatment. Biomaterials 2021, 281, 121332.

9

Toso, J. F.; Gill, V. J.; Hwu, P.; Marincola, F. M.; Restifo, N. P.; Schwartzentruber, D. J.; Sherry, R. M.; Topalian, S. L.; Yang, J. C.; Stock, F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 2002, 20, 142–152.

10

Wall, D. M.; Srikanth, C. V.; McCormick, B. A. Targeting tumors with Salmonella typhimurium-potential for therapy. Oncotarget 2010, 1, 721–728.

11

Zhou, S. B.; Gravekamp, C.; Bermudes, D.; Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 2018, 18, 727–743.

12

Bjarnsholt, T.; Whiteley, M.; Rumbaugh, K. P.; Stewart, P. S.; Jensen, P. Ø. Frimodt-Møller, N. The importance of understanding the infectious microenvironment. Lancet Infect. Dis. 2022, 22, e88–e92.

13

Westphal, K.; Leschner, S.; Jablonska, J.; Loessner, H.; Weiss, S. Containment of tumor-colonizing bacteria by host neutrophils. Cancer Res. 2008, 68, 2952–2960.

14

Winterbourn, C. C.; Kettle, A. J.; Hampton, M. B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 2016, 85, 765–792.

15

Galdiero, M. R.; Garlanda, C.; Jaillon, S.; Marone, G.; Mantovani, A. Tumor associated macrophages and neutrophils in tumor progression. J. Cell. Physiol. 2013, 228, 1404–1412.

16

Chu, D. F.; Dong, X. Y.; Zhao, Q.; Gu, J. K.; Wang, Z. J. Photosensitization priming of tumor microenvironments improves delivery of nanotherapeutics via neutrophil infiltration. Adv. Mater. 2017, 29, 1701021.

17

Mohanty, T.; Fisher, J.; Bakochi, A.; Neumann, A.; Cardoso, J. F. P.; Karlsson, C. A. Q.; Pavan, C.; Lundgaard, I.; Nilson, B.; Reinstrup, P. et al. Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat. Commun. 2019, 10, 1667.

18

Mi, Z.; Guo, L. N.; Liu, P.; Qi, Y.; Feng, Z. C.; Liu, J. H.; He, Z. H.; Yang, X.; Jiang, S. N.; Wu, J. Z. et al. “Trojan horse” Salmonella enabling tumor homing of silver nanoparticles via neutrophil infiltration for synergistic tumor therapy and enhanced biosafety. Nano Lett. 2020, 21, 414–423.

19

Chen, X. F.; Song, J. B.; Chen, X. Y.; Yang, H. H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 2019, 48, 3073–3101.

20

Fan, W. P.; Tang, W.; Lau, J.; Shen, Z. Y.; Xie, J.; Shi, J. L.; Chen, X. Y. Breaking the depth dependence by nanotechnology-enhanced X-ray-excited deep cancer theranostics. Adv. Mater. 2019, 31, 1806381.

21

Liu, Y.; Dong, Y. P.; Kong, L.; Shi, F.; Zhu, H.; Yu, J. M. Abscopal effect of radiotherapy combined with immune checkpoint inhibitors. J. Hematol. Oncol. 2018, 11, 104.

22

Arina, A.; Gutiontov, S. I.; Weichselbaum, R. R. Radiotherapy and immunotherapy for cancer: From “systemic” to “multisite”. Clin. Cancer Res. 2020, 26, 2777–2782.

23

Rockwell, S.; Dobrucki, I. T.; Kim, E. Y.; Marrison, S. T.; Vu, V. T. Hypoxia and radiation therapy: Past history, ongoing research, and future promise. Curr. Mol. Med. 2009, 9, 442–458.

24

Grimes, D. R.; Partridge, M. A mechanistic investigation of the oxygen fixation hypothesis and oxygen enhancement ratio. Biomed. Phys. Eng. Express 2015, 1, 045209.

25

Dai, Y. L.; Xu, C.; Sun, X. L.; Chen, X. Y. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev. 2017, 46, 3830–3852.

26

Chen, H. C.; Tian, J. W.; He, W. J.; Guo, Z. J. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 2015, 137, 1539–1547.

27

Song, X. J.; Xu, J.; Liang, C.; Chao, Y.; Jin, Q. T.; Wang, C.; Chen, M. W.; Liu, Z. Self-supplied tumor oxygenation through separated liposomal delivery of H2O2 and catalase for enhanced radio-immunotherapy of cancer. Nano Lett. 2018, 18, 6360–6368.

28

Zhang, R.; Song, X. J.; Liang, C.; Yi, X.; Song, G. S.; Chao, Y.; Yang, Y.; Yang, K.; Feng, L. Z.; Liu, Z. Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials 2017, 138, 13–21.

29

Xu, B. L.; Cui, Y.; Wang, W. W.; Li, S. S.; Lyu, C. L.; Wang, S.; Bao, W. E.; Wang, H. Y.; Qin, M.; Liu, Z. et al. Immunomodulation-enhanced nanozyme-based tumor catalytic therapy. Adv. Mater. 2020, 32, 2003563.

30

Wang, W. Q.; Jin, Y. L.; Liu, X.; Chen, F. M.; Zheng, X. H.; Liu, T. Q.; Yang, Y. M.; Yu, H. J. Endogenous stimuli-activatable nanomedicine for immune theranostics for cancer. Adv. Funct. Mater. 2021, 31, 2100386.

31

Wang, Z. J.; Li, J.; Cho, J.; Malik, A. B. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat. Nanotechnol. 2014, 9, 204–210.

32

Yang, Z. Z.; Du, Y. T.; Sun, Q.; Peng, Y. W.; Wang, R. D.; Zhou, Y.; Wang, Y. Q.; Zhang, C. L.; Qi, X. R. Albumin-based nanotheranostic probe with hypoxia alleviating potentiates synchronous multimodal imaging and phototherapy for glioma. ACS Nano 2020, 14, 6191–6212.

33

Chu, D. F.; Gao, J.; Wang, Z. J. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano 2015, 9, 11800–11811.

34

Segal, A. W.; Abo, A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem. Sci. 1993, 18, 43–47.

35

Niesel, K.; Schulz, M.; Anthes, J.; Alekseeva, T.; Macas, J.; Salamero-Boix, A.; Möckl, A.; Oberwahrenbrock, T.; Lolies, M.; Stein, S. et al. The immune suppressive microenvironment affects efficacy of radio-immunotherapy in brain metastasis. EMBO Mol. Med. 2021, 13, e13412.

36

Wang, W. G.; Xu, H. H.; Ye, Q. S.; Tao, F.; Wheeldon, I.; Yuan, A.; Hu, Y. Q.; Wu, J. H. Systemic immune responses to irradiated tumours via the transport of antigens to the tumour periphery by injected flagellate bacteria. Nat. Biomed. Eng. 2022, 6, 44–53.

37

Duong, M. T. Q.; Qin, Y. S.; You, S. H.; Min, J. J. Bacteria-cancer interactions: Bacteria-based cancer therapy. Exp. Mol. Med. 2019, 51, 1–15.

38

Borregaard, N. What doesn’t kill you makes you stronger: The anti-inflammatory effect of neutrophil respiratory burst. Immunity 2014, 40, 1–2.

39

Rolas, L.; Makhezer, N.; Hadjoudj, S.; El-Benna, J.; Djerdjouri, B.; Elkrief, L.; Moreau, R.; Périanin, A. Inhibition of mammalian target of rapamycin aggravates the respiratory burst defect of neutrophils from decompensated patients with cirrhosis. Hepatology 2013, 57, 1163–1171.

40

Forman, H. J.; Torres, M. Reactive oxygen species and cell signaling: Respiratory burst in macrophage signaling. Am. J. Respir. Crit. Care. Med. 2002, 166, S4–S8.

41

McCoy, K. D.; Ronchi, F.; Geuking, M. B. Host-microbiota interactions and adaptive immunity. Immunol. Rev. 2017, 279, 63–69.

42

Saccheri, F.; Pozzi, C.; Avogadri, F.; Barozzi, S.; Faretta, M.; Fusi, P.; Rescigno, M. Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Sci. Transl. Med. 2010, 2, 44ra57.

43

Caamaño, J.; Hunter, C. A. NF-κB family of transcription factors: Central regulators of innate and adaptive immune functions. Clin. Microbiol. Rev. 2002, 15, 414–429.

44

Duque, G. A.; Descoteaux, A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014, 5, 491.

45

Riboldi, E.; Porta, C.; Morlacchi, S.; Viola, A.; Mantovani, A.; Sica, A. Hypoxia-mediated regulation of macrophage functions in pathophysiology. Int. Immunol. 2013, 25, 67–75.

46

Pan, Y. Y.; Yu, Y. D.; Wang, X. J.; Zhang, T. Tumor-associated macrophages in tumor immunity. Front. Immunol. 2020, 11, 583084.

47

Chen, J. W.; Liang, C.; Song, X. J.; Yi, X.; Yang, K.; Feng, L. Z.; Liu, Z. Hybrid protein nano-reactors enable simultaneous increments of tumor oxygenation and iodine-131 delivery for enhanced radionuclide therapy. Small 2019, 15, 1903628.

48

Zhang, C. Y.; Dong, X. Y.; Gao, J.; Lin, W. J.; Liu, Z.; Wang, Z. J. Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke. Sci. Adv. 2019, 5, eaax7964.

49

Gao, J.; Wang, S. H.; Wang, Z. J. High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials 2017, 135, 62–73.

Nano Research
Pages 7355-7365
Cite this article:
Ni J, Zhou H, Gu J, et al. Bacteria-assisted delivery and oxygen production of nano-enzyme for potent radioimmunotherapy of cancer. Nano Research, 2022, 15(8): 7355-7365. https://doi.org/10.1007/s12274-022-4369-4
Topics:

1299

Views

13

Crossref

12

Web of Science

12

Scopus

2

CSCD

Altmetrics

Received: 17 February 2022
Revised: 25 March 2022
Accepted: 28 March 2022
Published: 17 May 2022
© Tsinghua University Press 2022
Return