AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Insight into the growth behaviors of MoS2 nanograins influenced by step edges and atomic structure of the substrate

Shuangyue Wang1Ni Yang1Mengyao Li1Ji Zhang1Ashraful Azam1Yin Yao1Xiaotao Zu2Liang Qiao1,2Peter Reece3John Stride4Jack Yang1( )Sean Li1( )
School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia
School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
School of Physics, UNSW Sydney, NSW 2052, Australia
School of Chemistry, UNSW Sydney, NSW 2052, Australia
Show Author Information

Graphical Abstract

The step edges of the underlying substrate could guide the formation of unidirectional MoS2 islands, and the geometric structure of the substrate determines the growth dimensionality.

Abstract

The step edges and intrinsic atomic structure of single-crystal substrate play a critical role in determining the growth pathways of transition metal dichalcogenide (TMD) grains, particularly whether the TMDs will grow into wafer-scale single-crystal or anisotropic nanoribbons. Hereby, we investigate the growth behaviours of the MoS2 nanograins on (0001) and ( 11¯02) sapphire substrates. On one hand, the step edges formed on the (0001) surface after thermal treatment are found to promote the macroscopic aggregation of MoS2 nanograins and to form unidirectional large triangular islands along with the < 112¯0> steps in the annealing process, while on the pristine (0001) surface, the MoS2 nanograins grow into a random network-like pattern. Moreover, oxygen treatment on the substrate can further enhance the growth of MoS2 nanograins. Transmission electron microscopy and fast Fourier transform patterns reveal that the substrate could modulate the orientation of MoS2 nanograins during their growing process. On the other hand, the MoS2 nanograins on the (11¯02) surface could self-assemble into one-dimensional nanoribbons due to the strong structural anisotropy of the substrate. In addition, the ratio of Raman intensities for peaks that correspond to the E2g1 and A1g phonon modes shows a linear relationship with the grain size due to the change of the “phonon confinement”. Moreover, new peaks located at 226 and 280 cm−1 can be observed in the off-resonant and resonant Raman spectra for the MoS2 nanograin samples, respectively, which can be attributed to the scatterings from the edges of as-fabricated MoS2 nanostructures.

Electronic Supplementary Material

Download File(s)
12274_2022_4373_MOESM1_ESM.pdf (783.5 KB)

References

1

Xu, H.; Zhang, H. M.; Guo, Z. X.; Shan, Y. W.; Wu, S. W.; Wang, J. L.; Hu, W. D.; Liu, H. Q.; Sun, Z. Z.; Luo, C. et al. High-performance wafer-scale MoS2 transistors toward practical application. Small 2018, 14, 1803465.

2

Wang, D. S.; Zhou, Y.; Zhang, H.; Zhang, R. F.; Dong, H. Y.; Xu, R.; Cheng, Z. H.; He, Y. H.; Wang, Z. Y. Wafer-scale growth of pristine and doped monolayer MoS2 films for electronic device applications. Inorg. Chem. 2020, 59, 17356–17363.

3

Ruppert, C.; Chernikov, A.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation. Nano Lett. 2017, 17, 644–651.

4

Amani, M.; Burke, R. A.; Ji, X.; Zhao, P.; Lien, D. H.; Taheri, P.; Ahn, G. H.; Kirya, D.; Ager III, J. W.; Yablonovitch, E. et al. High luminescence efficiency in MoS2 grown by chemical vapor deposition. ACS Nano 2016, 10, 6535–6541.

5

He, J. X.; Qian, T.; Cai, C.; Xiang, X.; Li, S. A.; Zu, X. T. Nickel-based selenides with a fractal structure as an excellent bifunctional electrocatalyst for water splitting. Nanomaterials 2022, 12, 281.

6

Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

7

Ma, Z. P.; Wang, S. Y.; Deng, Q. X.; Hou, Z. F.; Zhou, X.; Li, X. B.; Cui, F. F.; Si, H. Y.; Zhai, T. Y.; Xu, H. Epitaxial growth of rectangle shape MoS2 with highly aligned orientation on twofold symmetry a-plane sapphire. Small 2020, 16, 2000596.

8

Aljarb, A.; Fu, J. H.; Hsu, C. C.; Chuu, C. P.; Wan, Y.; Hakami, M.; Naphade, D. R.; Yengel, E.; Lee, C. J.; Brems, S. et al. Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat. Mater. 2020, 19, 1300–1306.

9

Luo, C.; Wang, C. L.; Wu, X.; Zhang, J.; Chu, J. H. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small 2017, 13, 1604259.

10

Hansen, L. P.; Johnson, E.; Brorson, M.; Helveg, S. Growth mechanism for single- and multi-layer MoS2 nanocrystals. J. Phys. Chem. C 2014, 118, 22768–22773.

11

Goodman, E. D.; Schwalbe, J. A.; Cargnello, M. Mechanistic understanding and the rational design of sinter-resistant heterogeneous catalysts. ACS Catal. 2017, 7, 7156–7173.

12

Doll, J. D.; Voter, A. F. Recent developments in the theory of surface diffusion. Annu. Rev. Phys. Chem. 1987, 38, 413–431.

13

Bertrand, P. A. Surface-phonon dispersion of MoS2. Phys. Rev. B 1991, 44, 5745–5749.

14

Gołasa, K.; Grzeszczyk, M.; Leszczyński, P.; Faugeras, C.; Nicolet, A. A. L.; Wysmołek, A.; Potemski, M.; Babiński, A. Multiphonon resonant Raman scattering in MoS2. Appl. Phys. Lett. 2014, 104, 092106.

15

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

16

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

17

Molina-Sánchez, A.; Hummer, K.; Wirtz, L. Vibrational and optical properties of MoS2: From monolayer to bulk. Surf. Sci. Rep. 2015, 70, 554–586.

18

Chakraborty, B.; Matte, H. S. S. R.; Sood, A. K.; Rao, C. N. R. Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 2013, 44, 92–96.

19

Chen, J. M.; Wang, C. S. Second order Raman spectrum of MoS2. Solid State Commun. 1974, 14, 857–860.

20

Ferreira, E. H. M.; Moutinho, M. V. O.; Stavale, F.; Lucchese, M. M.; Capaz, R. B.; Achete, C. A.; Jorio, A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429.

21

Luo, J. L.; Zheng, Z.; Yan, S. K.; Morgan, M.; Zu, X. T.; Xiang, X.; Zhou, W. L. Photocurrent enhanced in UV-vis-NIR photodetector based on CdSe/CdTe core/shell nanowire arrays by piezo-phototronic effect. ACS Photonics 2020, 7, 1461–1467.

22

Cai, C.; Han, S. B.; Zhang, X. T.; Yu, J. X.; Xiang, X.; Yang, J.; Qiao, L.; Zu, X. T.; Chen, Y. Z.; Li, S. A. Ultrahigh oxygen evolution reaction activity in Au doped co-based nanosheets. RSC Adv. 2022, 12, 6205–6213.

23

Wang, S. Y.; Huang, J. K.; Li, M. Y.; Azam, A.; Zu, X. T.; Qiao, L.; Yang, J.; Li, S. Growth of high-quality monolayer transition metal dichalcogenide nanocrystals by chemical vapor deposition and their photoluminescence and electrocatalytic properties. ACS Appl. Mater. Interfaces 2021, 13, 47962–47971.

24

Hu, S. L.; Li, W. X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 2021, 374, 1360–1365.

25

José-Yacamán, M.; Gutierrez-Wing, C.; Miki, M.; Yang, D. Q.; Piyakis, K. N.; Sacher, E. Surface diffusion and coalescence of mobile metal nanoparticles. J. Phys. Chem. B 2005, 109, 9703–9711.

26

Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazić, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y. C.; Krasnozhon, D.; Chen, M. W. et al. Large-area epitaxial monolayer MoS2. ACS Nano 2015, 9, 4611–4620.

27

Somorjai, G. A. Modern surface science and surface technologies: An introduction. Chem. Rev. 1996, 96, 1223–1236.

28

Kim, M.; Kang, K. M.; Wang, Y.; Park, H. H. N-doped Al2O3 thin films deposited by atomic layer deposition. Thin Solid Films 2018, 660, 657–662.

29

Ahmad, R.; Srivastava, R.; Yadav, S.; Singh, D.; Gupta, G.; Chand, S.; Sapra, S. Functionalized molybdenum disulfide nanosheets for 0D-2D hybrid nanostructures: Photoinduced charge transfer and enhanced photoresponse. J. Phys. Chem. Lett. 2017, 8, 1729–1738.

30

Richter, H.; Wang, Z. P.; Ley, L. The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 1981, 39, 625–629.

31

Mignuzzi, S.; Pollard, A. J.; Bonini, N.; Brennan, B.; Gilmore, I. S.; Pimenta, M. A.; Richards, D.; Roy, D. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 2015, 91, 195411.

32

Blanco, É.; Afanasiev, P.; Berhault, G.; Uzio, D.; Loridant, S. Resonance Raman spectroscopy as a probe of the crystallite size of MoS2 nanoparticles. C. R. Chim. 2016, 19, 1310–1314.

33

Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G. Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 1999, 60, 2883.

34

Carvalho, B. R.; Wang, Y. X.; Mignuzzi, S.; Roy, D.; Terrones, M.; Fantini, C.; Crespi, V. H.; Malard, L. M.; Pimenta, M. A. Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nat. Commun. 2017, 8, 14670.

35

Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Neto, A. H. C.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S. Edge phonons in black phosphorus. Nat. Commun. 2016, 7, 12191.

36

Guo, Y.; Zhang, W. X.; Wu, H. C.; Han, J. F.; Zhang, Y. L.; Lin, S. H.; Liu, C. R.; Xu, K.; Qiao, J. S.; Ji, W. et al. Discovering the forbidden Raman modes at the edges of layered materials. Sci. Adv. 2018, 4, eaau6252.

Nano Research
Pages 7646-7654
Cite this article:
Wang S, Yang N, Li M, et al. Insight into the growth behaviors of MoS2 nanograins influenced by step edges and atomic structure of the substrate. Nano Research, 2022, 15(8): 7646-7654. https://doi.org/10.1007/s12274-022-4373-8
Topics:

799

Views

3

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 16 January 2022
Revised: 23 March 2022
Accepted: 29 March 2022
Published: 13 May 2022
© Tsinghua University Press 2022
Return