AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The confined growth of few-layered and ultrashort-slab Ni-promoted MoS2 on reduced graphene oxide for deep-degree hydrodesulfurization

Dongxu WangLei WangYanqing JiaoAiping WuHaijing YanXin KangChungui Tian( )Jiancong LiuHonggang Fu( )
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
Show Author Information

Graphical Abstract

The few-layered and ultrashort-slab Ni-promoted MoS2, in which the edge Mo atoms are partially substituted by isolated Ni atoms, supported on graphene is constructed by anchoring PMo12 clusters and Ni2+ on polyethyleneimine (PEI)-modified graphite oxide (GO). The catalyst possesses the high sulfurization degree and rich accessible edge-sites, thus being promising for hydrodesulfurization (HDS) reaction with the superior performance to the ever reported catalysts.

Abstract

Hydrodesulfurization (HDS) is an essential process in clean fuel oil production, however, the huge challenge is the synthesis of the catalyst with plentiful active sites. Here, we have shown the design of few-layered, ultrashort Ni-Mo-S slabs dispersed on reduced graphene oxide (Ni-Mo-S/rGO-A) based on anchoring [PMo12O40]3− clusters and Ni2+ on polyethyleneimine (PEI)-modified graphite oxide. Structural characterizations (transmission electron microscopy (TEM), X-ray absorption fine structure (XAFS), etc.) show that Ni-Mo-S slabs with predominant monolayer and partial substitution of edge Mo atoms by isolated Ni atoms have rich accessible edge Ni-Mo-S sites and high sulfurization degree. All virtues endow it with plentiful edge-active sites, and consequently, the enhanced performance for hydrodesulfurization of dibenzothiophene (DBT). The hydrodesulfurization proceeds via a more-favorable direct desulfurization (DDS) route with a reaction rate constant (kHDS) of 48.6 × 10−7 mol·g−1·s−1 over Ni-Mo-S/rGO-A catalyst, which is 4.3 times greater than that over traditional Ni-Mo-S/Al2O3 catalyst and at the forefront of reported catalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_4375_MOESM1_ESM.pdf (2.9 MB)

References

1

Peralta-Yahya, P. P.; Zhang, F. Z.; Del Cardayre, S. B.; Keasling, J. D. Microbial engineering for the production of advanced biofuels. Nature 2012, 488, 320–328.

2

Wang, L. D.; He, W.; Yu, Z. K. Transition-metal mediated carbon–sulfur bond activation and transformations. Chem. Soc. Rev. 2013, 42, 599–621.

3

Ihli, J.; Bloch, L.; Krumeich, F.; Wakonig, K.; Holler, M.; Guizar-Sicairos, M.; Weber, T.; Da Silva, J. C.; Van Bokhoven, J. A. Hierarchical structure of NiMo hydrodesulfurization catalysts determined by ptychographic X-ray computed tomography. Angew. Chem., Int. Ed. 2020, 59, 17266–17271.

4

Wang, S. M.; Ge, H.; Sun, S. L.; Zhang, J. Z.; Liu, F. M.; Wen, X. D.; Yu, X. H.; Wang, L. P.; Zhang, Y.; Xu, H. W. et al. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications. J. Am. Chem. Soc. 2015, 137, 4815–4822.

5

Li, Y. X.; Shen, J. X.; Peng, S. S.; Zhang, J. K.; Wu, J.; Liu, X. Q.; Sun, L. B. Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nat. Commun. 2020, 11, 3206.

6

Zhang, S. M.; Liu, N.; Wang, H. W.; Lu, Q. C.; Shi, W. X.; Wang, X. Sub-nanometer nanobelts based on titanium dioxide/zirconium dioxide-polyoxometalate heterostructures. Adv. Mater. 2021, 33, 2100576.

7

Zhang, M.; Liu, J. Q.; Li, H. P.; Wei, Y. C.; Fu, Y. J.; Liao, W. Y.; Zhu, L. H.; Chen, G. Y.; Zhu, W. S.; Li, H. M. Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization. Appl. Catal. B: Environ. 2020, 271, 118936.

8

López-Benítez, A.; Guevara-Lara, A.; Berhault, G. Nickel-containing polyoxotungstates based on [PW9O34]9− and [PW10O39]13− keggin lacunary anions supported on Al2O3 for dibenzothiophene hydrodesulfurization application. ACS Catal. 2019, 9, 6711–6727.

9

Wagenhofer, M. F.; Shi, H.; Gutiérrez, O. Y.; Jentys, A.; Lercher, J. A. Enhancing hydrogenation activity of Ni-Mo sulfide hydrodesulfurization catalysts. Sci. Adv. 2020, 6, eaax5331.

10

Liang, J. L.; Wu, M. M.; Wei, P. H.; Zhao, J. C.; Huang, H.; Li, C. F.; Lu, Y. K.; Liu, Y. Q.; Liu, C. G. Efficient hydrodesulfurization catalysts derived from strandberg P-Mo-Ni polyoxometalates. J. Catal. 2018, 358, 155–167.

11

Gutiérrez, O. Y.; Klimova, T. Effect of the support on the high activity of the (Ni)Mo/ZrO2-SBA-15 catalyst in the simultaneous hydrodesulfurization of DBT and 4,6-DMDBT. J. Catal. 2011, 281, 50–62.

12

Jiao, J. Q.; Fu, J. Y.; Wei, Y. C.; Zhao, Z.; Duan, A. J.; Xu, C. M.; Li, J. M.; Song, H.; Zheng, P.; Wang, X. L. et al. Al-modified dendritic mesoporous silica nanospheres-supported NiMo catalysts for the hydrodesulfurization of dibenzothiophene: Efficient accessibility of active sites and suitable metal–support interaction. J. Catal. 2017, 356, 269–282.

13

Gutiérrez, O. Y.; Singh, S.; Schachtl, E.; Kim, J.; Kondratieva, E.; Hein, J.; Lercher, J. A. Effects of the support on the performance and promotion of (Ni)MoS2 catalysts for simultaneous hydrodenitrogenation and hydrodesulfurization. ACS Catal. 2014, 4, 1487–1499.

14

Li, Q. H.; Li, Z.; Zhang, Q. H.; Zheng, L. R.; Yan, W. S.; Liang, X.; Gu, L.; Chen, C.; Wang, D. S.; Peng, Q. et al. Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Res. 2021, 14, 1435–1442.

15

Yang, L.; Wang, X. Z.; Liu, Y.; Yu, Z. F.; Liang, J. J.; Chen, B. B.; Shi, C.; Tian, S.; Li, X.; Qiu, J. S. Monolayer MoS2 anchored on reduced graphene oxide nanosheets for efficient hydrodesulfurization. Appl. Catal. B: Environ. 2017, 200, 211–221.

16

Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 6673–6681.

17

Huang, L. B.; Zhao, L.; Zhang, Y.; Chen, Y. Y.; Zhang, Q. H.; Luo, H.; Zhang, X.; Tang, T.; Gu, L.; Hu, J. S. Self-limited on-site conversion of MoO3 nanodots into vertically aligned ultrasmall monolayer MoS2 for efficient hydrogen evolution. Adv. Energy Mater. 2018, 8, 1800734.

18

Rangarajan, S.; Mavrikakis, M. On the preferred active sites of promoted MoS2 for hydrodesulfurization with minimal organonitrogen inhibition. ACS Catal. 2017, 7, 501–509.

19

Sushkevich, V. L.; Popov, A. G.; Ivanova, I. I. Sulfur-33 isotope tracing of the hydrodesulfurization process: Insights into the reaction mechanism, catalyst characterization and improvement. Angew. Chem., Int. Ed. 2017, 56, 10872–10876.

20

Nielsen, L. P.; Christensen, S. V.; Topsøe, H.; Clausen, B. S. Changes in metal–sulfur bond energy in promoted and unpromoted molybdenum catalysts. Catal. Lett. 2000, 67, 81–85.

21

Xu, J. D.; Guo, Y. F.; Huang, T. T.; Fan, Y. Hexamethonium bromide-assisted synthesis of CoMo/graphene catalysts for selective hydrodesulfurization. Appl. Catal. B: Environ. 2019, 244, 385–395.

22

Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

23

Kang, X.; Liu, J. C.; Tian, C. G.; Wang, D. X.; Li, Y. R.; Zhang, H. Y.; Cheng, X. S.; Wu, A. P.; Fu, H. G. Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization. Nano Res. 2020, 13, 882–890.

24

Wang, X. L.; Mei, J. L.; Zhao, Z.; Zheng, P.; Chen, Z. T.; Gao, D. W.; Fu, J. Y.; Fan, J. Y.; Duan, A. J.; Xu, C. M. Self-assembly of hierarchically porous ZSM-5/SBA-16 with different morphologies and its high isomerization performance for hydrodesulfurization of dibenzothiophene and 4, 6-dimethyldibenzothiophene. ACS Catal. 2018, 8, 1891–1902.

25

Wang, X. L.; Zhao, Z.; Zheng, P.; Chen, Z. T.; Duan, A. J.; Xu, C. M.; Jiao, J. Q.; Zhang, H. L.; Cao, Z. K.; Ge, B. H. Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. J. Catal. 2016, 344, 680–691.

26

López-Benítez, A.; Berhault, G.; Guevara-Lara, A. Addition of manganese to alumina and its influence on the formation of supported NiMo catalysts for dibenzothiophene hydrodesulfurization application. J. Catal. 2016, 344, 59–76.

27

Lai, W. K.; Chen, Z.; Zhu, J. P.; Yang, L. F.; Zheng, J. B.; Yi, X. D.; Fang, W. P. A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts. Nanoscale 2016, 8, 3823–3833.

28

Hajjar, Z.; Kazemeini, M.; Rashidi, A.; Soltanali, S. Hydrodesulfurization catalysts based on carbon nanostructures: A review. Fuller. Nanotub. Carbon Nanostruct. 2018, 26, 557–569.

29

Dugulan, A. I.; Van Veen, J. A. R.; Hensen, E. J. M. On the structure and hydrotreating performance of carbon-supported CoMo- and NiMo-sulfides. Appl. Catal. B: Environ. 2013, 142–143, 178–186.

30

Fu, W. Q.; Zhang, L.; Tang, T. D.; Ke, Q. P.; Wang, S.; Hu, J. B.; Fang, G. Y.; Li, J. X.; Xiao, F. S. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y. J. Am. Chem. Soc. 2011, 133, 15346–15349.

31

Duan, A. J.; Li, T. S.; Zhao, Z.; Liu, B. J.; Zhou, X. F.; Jiang, G. Y.; Liu, J.; Wei, Y. C.; Pan, H. F. Synthesis of hierarchically porous L-KIT-6 silica-alumina material and the super catalytic performances for hydrodesulfurization of benzothiophene. Appl. Catal. B: Environ. 2015, 165, 763–773.

32

Yan, H. J.; Tian, C. G.; Wang, L.; Wu, A. P.; Meng, M. C.; Zhao, L.; Fu, H. G. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 6325–6329.

33

Yan, H. J.; Tian, C. G.; Sun, L.; Wang, B.; Wang, L.; Yin, J.; Wu, A. P.; Fu, H. G. Small-sized and high-dispersed WN from [SiO4(W3O9)4]4− clusters loading on GO-derived graphene as promising carriers for methanol electro-oxidation. Energy Environ. Sci. 2014, 7, 1939–1949.

34

Peng, M.; Dong, C. Y.; Gao, R.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2021, 7, 262–273.

35

Ryaboshapka, D.; Piccolo, L.; Aouine, M.; Bargiela, P.; Briois, V.; Afanasiev, P. Ultradispersed (Co)Mo catalysts with high hydrodesulfurization activity. Appl. Catal. B: Environ. 2022, 302, 120831.

36

Wang, D. X.; Kang, X.; Gu, Y.; Zhang, H. Y.; Liu, J. C.; Wu, A. P.; Yan, H. J.; Tian, C. G.; Fu, H. G. Electronic tuning of Ni by Mo species for highly efficient hydroisomerization of n-alkanes comparable to Pt-based catalysts. ACS Catal. 2020, 10, 10449–10458.

37

Liu, W.; Luo, C.; Zhang, S. W.; Zhang, B.; Ma, J. B.; Wang, X. L.; Liu, W. H.; Li, Z. J.; Yang, Q. H.; Lv, W. Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries. ACS Nano 2021, 15, 7491–7499.

38

Ma, G. Y.; Zhou, Y. L.; Wang, Y. Y.; Feng, Z. Y.; Yang, J. N,P-codoped graphene supported few-layered MoS2 as a long-life and high-rate anode materials for potassium-ion storage. Nano Res. 2021, 14, 3523–3530.

39

Tang, Y. J.; Wang, Y.; Wang, X. L.; Li, S. L.; Huang, W.; Dong, L. Z.; Liu, C. H.; Li, Y. F.; Lan, Y. Q. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1600116.

40

Zavala-Sanchez, L. A.; Portier, X.; Maugé, F.; Oliviero, L. Promoter location on NiW/Al2O3 sulfide catalysts: Parallel study by IR/CO spectroscopy and high-resolution STEM-HAADF microscopy. ACS Catal. 2020, 10, 6568–6578.

41

Geng, S.; Tian, F. Y.; Li, M. G.; Liu, Y. Q.; Sheng, J.; Yang, W. W.; Yu, Y. S.; Hou, Y. L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816.

42

Zhou, W. W.; Liu, M. F.; Zhang, Q.; Wei, Q.; Ding, S. J.; Zhou, Y. S. Synthesis of NiMo catalysts supported on gallium-containing mesoporous Y zeolites with different gallium contents and their high activities in the hydrodesulfurization of 4,6-dimethyldibenzothiophene. ACS Catal. 2017, 7, 7665–7679.

43

Cao, D. F.; Ye, K.; Moses, O. A.; Xu, W. J.; Liu, D. B.; Song, P.; Wu, C. Q.; Wang, C. D.; Ding, S. Q.; Chen, S. M. et al. Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution. ACS Nano 2019, 13, 11733–11740.

44

Zhang, H. B.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1807086.

45

Vít, Z.; Gulková, D.; Kaluža, L.; Kupčík, J. Pd-Pt catalysts on mesoporous SiO2-Al2O3 with superior activity for HDS of 4,6-dimethyldibenzothiophene: Effect of metal loading and support composition. Appl. Catal. B: Environ. 2015, 179, 44–53.

46

Yang, K. X.; Chen, X.; Qi, J.; Bai, Z. X.; Zhang, L. L.; Liang, C. H. A highly efficient and sulfur-tolerant Pd2Si/CNTs catalyst for hydrodesulfurization of dibenzothiophenes. J. Catal. 2019, 369, 363–371.

47

Gao, D. W.; Duan, A. J.; Zhang, X.; Zhao, Z.; E, H.; Li, J. M.; Wang, H. Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with different morphologies and their catalytic performance of DBT HDS. Appl. Catal. B: Environ. 2015, 165, 269–284.

48

Chowdari, R. K.; De León, J. N. D.; Fuentes-Moyado, S. Template-free, facile synthesis of nickel promoted multi-walled MoS2 & nano-bricks containing hierarchical MoS 2 nanotubes from the bulk NiMo oxide. Appl. Catal. B: Environ. 2021, 298, 120617.

49

Varakin, A. N.; Mozhaev, A. V.; Pimerzin, A. A.; Nikulshin, P. A. Comparable investigation of unsupported MoS2 hydrodesulfurization catalysts prepared by different techniques: Advantages of support leaching method. Appl. Catal. B: Environ. 2018, 238, 498–508.

50

Li, H.; Liu, J. J.; Li, J. C.; Hu, Y. F.; Wang, W. N.; Yuan, D. L.; Wang, Y. D.; Yang, T.; Li, L.; Sun, H. X. et al. Promotion of the inactive iron sulfide to an efficient hydrodesulfurization catalyst. ACS Catal. 2017, 7, 4805–4816.

51

Chowdari, R. K.; De León, J. N. D.; Fuentes-Moyado, S. Single step and template-free synthesis of Dandelion flower-like core–shell architectures of metal oxide microspheres: Influence of sulfidation on particle morphology & hydrodesulfurization performance. Appl. Catal. B: Environ. 2020, 277, 119213.

Nano Research
Pages 7052-7062
Cite this article:
Wang D, Wang L, Jiao Y, et al. The confined growth of few-layered and ultrashort-slab Ni-promoted MoS2 on reduced graphene oxide for deep-degree hydrodesulfurization. Nano Research, 2022, 15(8): 7052-7062. https://doi.org/10.1007/s12274-022-4375-6
Topics:

986

Views

12

Crossref

11

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 09 February 2022
Revised: 28 March 2022
Accepted: 29 March 2022
Published: 16 June 2022
© Tsinghua University Press 2022
Return