AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Focus on using nanopore technology for societal health, environmental, and energy challenges

Izadora Mayumi Fujinami Tanimoto1,2Benjamin Cressiot3( )Sandra J. Greive4Bruno Le Pioufle2Laurent Bacri1( )Juan Pelta1,3( )
LAMBE, CNRS, Univ Evry, Université Paris-Saclay, 91025, Evry-Courcouronnes, France
LuMIn, CNRS, Institut d'Alembert, ENS Paris-Saclay, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
LAMBE, CNRS, CY Cergy Paris Université, 95000, Cergy, France
DreamPore S.A.S., 33 Boulevard du Port 95000, Cergy, France
Show Author Information

Graphical Abstract

Nanopore based electrical sensing is a promising tool to overcome existing and emerging societal challenges in health, environment, and energy storage. Robust and highly sensitive nanopore devices could provide rapid point-of-care medical diagnosis, on-site pollutant monitoring systems, along with new methods for generating renewable energy for storage in batteries with integrated sensors that increase their efficiency and storage capacity.

Abstract

With an increasing global population that is rapidly ageing, our society faces challenges that impact health, environment, and energy demand. With this ageing comes an accumulation of cellular changes that lead to the development of diseases and susceptibility to infections. This impacts not only the health system, but also the global economy. As the population increases, so does the demand for energy and the emission of pollutants, leading to a progressive degradation of our environment. This in turn impacts health through reduced access to arable land, clean water, and breathable air. New monitoring approaches to assist in environmental control and minimize the impact on health are urgently needed, leading to the development of new sensor technologies that are highly sensitive, rapid, and low-cost. Nanopore sensing is a new technology that helps to meet this purpose, with the potential to provide rapid point-of-care medical diagnosis, real-time on-site pollutant monitoring systems to manage environmental health, as well as integrated sensors to increase the efficiency and storage capacity of renewable energy sources. In this review we discuss how the powerful approach of nanopore based single-molecule, or particle, electrical promises to overcome existing and emerging societal challenges, providing new opportunities and tools for personalized medicine, localized environmental monitoring, and improved energy production and storage systems.

References

[1]
United Nations. Population [Online]. United Nations: New York. https://www.un.org/en/global-issues/population (accessed Jan 29, 2022).
[2]
Ageing and Health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed Jan 25, 2022).
[3]
The World Bank. The World Bank Group’s Response to the COVID-19 (Coronavirus) Pandemic [Online]. The World Bank Group: Washington. https://www.worldbank.org/en/who-we-are/news/coronavirus-covid19 (accessed Jan 25, 2022).
[4]
Healthy Environment, Healthy People | UNEP-UN Environment Programme. https://www.unep.org/resources/publication/healthy-environment-healthy-people (accessed Feb 28, 2022).
[5]
Making Peace With Nature | UNEP-UN Environment Programme. https://www.unep.org/resources/making-peace-nature (accessed Jan 29, 2022).
[6]

Alimi, O. S.; Budarz, J. F.; Hernandez, L. M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 2018, 52, 1704–1724.

[7]

Bouwmeester, H.; Hollman, P. C. H.; Peters, R. J. B. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environ. Sci. Technol. 2015, 49, 8932–8947.

[8]

Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M. S.; Metreveli, G.; Schaumann, G. E.; Schulz, R.; Wagner, S. Nanoparticles in the environment: Where do we come from, where do we go to. Environ. Sci. Eur. 2018, 30, 6.

[9]

Tortella, G. R.; Rubilar, O.; Durán, N.; Diez, M. C.; Martínez, M.; Parada, J.; Seabra, A. B. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater. 2020, 390, 121974.

[10]

Lu, Y. F.; Zhang, Y.; Deng, Y. F.; Jiang, W.; Zhao, Y. P.; Geng, J. J.; Ding, L. L.; Ren, H. Q. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 2016, 50, 4054–4060.

[11]

Sun, X. D. ; Yuan, X. Z. ; Jia, Y. B. ; Feng, L. J. ; Zhu, F. P. ; Dong, S. S. ; Liu, J. J. ; Kong, X. P. ; Tian, H. Y. ; Duan, J. L. et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 2020, 15, 755–760.

[12]

Lelieveld, J.; Evans, J. S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371.

[13]

Czarny, B.; Georgin, D.; Berthon, F.; Plastow, G.; Pinault, M.; Patriarche, G.; Thuleau, A.; L’Hermite, M. M.; Taran, F.; Dive, V. Carbon nanotube translocation to distant organs after pulmonary exposure: Insights from in situ 14C-radiolabeling and tissue radioimaging. ACS Nano 2014, 8, 5715–5724.

[14]

Buzea, C.; Pacheco, I. I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71.

[15]

Reid, C. E.; Brauer, M.; Johnston, F. H.; Jerrett, M.; Balmes, J. R.; Elliott, C. T. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 2016, 124, 1334–1343.

[16]

Ermolin, M. S.; Fedotov, P. S.; Malik, N. A.; Karandashev, V. K. Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale. Chemosphere 2018, 200, 16–22.

[17]

Trejos, E. M.; Silva, L. F. O.; Hower, J. C.; Flores, E. M. M.; González, C. M.; Pachón, J. E.; Aristizábal, B. H. Volcanic emissions and atmospheric pollution: A study of nanoparticles. Geosci. Front. 2021, 12, 746–755.

[18]

Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074.

[19]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[20]

Lewis, N. S. Powering the planet. MRS Bull. 2007, 32, 808–820.

[21]

Tarascon, J. M. Les batteries sont-elles la bonne option pour un développement durable. C. R. Geosci. 2020, 352, 401–414.

[22]
Coulter, W. H. Means for counting particles suspended in a fluid. U. S. Patent 2, 656, 508, October 20, 1953.
[23]

Shi, W. Q.; Friedman, A. K.; Baker, L. A. Nanopore sensing. Anal. Chem. 2017, 89, 157–188.

[24]

Cressiot, B.; Ouldali, H.; Pastoriza-Gallego, M.; Bacri, L.; van der Goot, F. G.; Pelta, J. Aerolysin, a powerful protein sensor for fundamental studies and development of upcoming applications. ACS Sens. 2019, 4, 530–548.

[25]

Lepoitevin, M.; Ma, T. J.; Bechelany, M.; Janot, J. M.; Balme, S. Functionalization of single solid state nanopores to mimic biological ion channels: A review. Adv. Colloid Interface Sci. 2017, 250, 195–213.

[26]

Xue, L.; Yamazaki, H.; Ren, R.; Wanunu, M.; Ivanov, A. P.; Edel, J. B. Solid-state nanopore sensors. Nat. Rev. Mater. 2020, 5, 931–951.

[27]

Marcozzi, A.; Jager, M.; Elferink, M.; Straver, R.; van Ginkel, J. H.; Peltenburg, B.; Chen, L. T.; Renkens, I.; van Kuik, J.; Terhaard, C. et al. Accurate detection of circulating tumor DNA using nanopore consensus sequencing. npj Genom. Med. 2021, 6, 106.

[28]

Wang, Y.; Zheng, D. L.; Tan, Q. L.; Wang, M. X.; Gu, L. Q. Nanopore-based detection of circulating micrornas in lung cancer patients. Nat. Nanotechnol. 2011, 6, 668–674.

[29]

He, L. Q.; Tessier, D. R.; Briggs, K.; Tsangaris, M.; Charron, M.; McConnell, E. M.; Lomovtsev, D.; Tabard-Cossa, V. Digital immunoassay for biomarker concentration quantification using solid-state nanopores. Nat. Commun. 2021, 12, 5348.

[30]

Huang, G.; Willems, K.; Soskine, M.; Wloka, C.; Maglia, G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 2017, 8, 935.

[31]

Quick, J.; Loman, N. J.; Duraffour, S.; Simpson, J. T.; Severi, E.; Cowley, L.; Bore, J. A.; Koundouno, R.; Dudas, G.; Mikhail, A. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016, 530, 228–232.

[32]

Taniguchi, M.; Minami, S.; Ono, C.; Hamajima, R.; Morimura, A.; Hamaguchi, S.; Akeda, Y.; Kanai, Y.; Kobayashi, T.; Kamitani, W. et al. Combining machine learning and nanopore construction creates an artificial intelligence nanopore for coronavirus detection. Nat. Commun. 2021, 12, 3726.

[33]

Kawano, R.; Osaki, T.; Sasaki, H.; Takinoue, M.; Yoshizawa, S.; Takeuchi, S. Rapid detection of a cocaine-binding aptamer using biological nanopores on a chip. J. Am. Chem. Soc. 2011, 133, 8474–8477.

[34]

Galenkamp, N. S.; Soskine, M.; Hermans, J.; Wloka, C.; Maglia, G. Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores. Nat. Commun. 2018, 9, 4085.

[35]

Deamer, D.; Akeson, M.; Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 2016, 34, 518–524.

[36]

Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 1996, 93, 13770–13773.

[37]

Loman, N. J.; Quick, J.; Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 2015, 12, 733–735.

[38]

Stancu, M. C.; van Roosmalen, M. J.; Renkens, I.; Nieboer, M. M.; Middelkamp, S.; de Ligt, J.; Pregno, G.; Giachino, D.; Mandrile, G.; Valle-Inclan, J. E. et al. Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat. Commun. 2017, 8, 1326.

[39]
Valle-Inclan, J. E.; Stangl, C.; de Jong, A. C.; van Dessel, L. F.; van Roosmalen, M. J.; Helmijr, J. C. A.; Renkens, I.; de Blank, S.; de Witte, C. J.; Martens, J. W. M. et al. Rapid identification of genomic structural variations with nanopore sequencing enables blood-based cancer monitoring. MedRxiv, in press, doi: https://doi.org/10.1101/19011932.
[40]

Norris, A. L.; Workman, R. E.; Fan, Y. F.; Eshleman, J. R.; Timp, W. Nanopore sequencing detects structural variants in cancer. Cancer Biol. Ther. 2016, 17, 246–253.

[41]

Minervini, C. F.; Cumbo, C.; Orsini, P.; Brunetti, C.; Anelli, L.; Zagaria, A.; Minervini, A.; Casieri, P.; Coccaro, N.; Tota, G. et al. TP53 gene mutation analysis in chronic lymphocytic leukemia by nanopore MinION sequencing. Diagn. Pathol. 2016, 11, 96.

[42]

Orsini, P.; Minervini, C. F.; Cumbo, C.; Anelli, L.; Zagaria, A.; Minervini, A.; Coccaro, N.; Tota, G.; Casieri, P.; Impera, L. et al. Design and MinION testing of a nanopore targeted gene sequencing panel for chronic lymphocytic leukemia. Sci. Rep. 2018, 8, 11798.

[43]

Suzuki, A.; Suzuki, M.; Mizushima-Sugano, J.; Frith, M. C.; Makałowski, W.; Kohno, T.; Sugano, S.; Tsuchihara, K.; Suzuki, Y. Sequencing and phasing cancer mutations in lung cancers using a long-read portable sequencer. DNA Res. 2017, 24, 585–596.

[44]

Calin, G. A.; Croce, C. M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6, 857–866.

[45]

Mitchell, P. S.; Parkin, R. K.; Kroh, E. M.; Fritz, B. R.; Wyman, S. K.; Pogosova-Agadjanyan, E. L.; Peterson, A.; Noteboom, J.; O’Briant, K. C.; Allen, A. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518.

[46]

Wanunu, M.; Dadosh, T.; Ray, V.; Jin, J. M.; McReynolds, L.; Drndić, M. Rapid electronic detection of probe-specific MicroRNAs using thin nanopore sensors. Nat. Nanotechnol. 2010, 5, 807–814.

[47]

Shim, J.; Kim, Y.; Humphreys, G. I.; Nardulli, A. M.; Kosari, F.; Vasmatzis, G.; Taylor, W. R.; Ahlquist, D. A.; Myong, S.; Bashir, R. Nanopore-based assay for detection of methylation in double-stranded DNA fragments. ACS Nano 2015, 9, 290–300.

[48]

Gilboa, T.; Torfstein, C.; Juhasz, M.; Grunwald, A.; Ebenstein, Y.; Weinhold, E.; Meller, A. Single-molecule DNA methylation quantification using electro-optical sensing in solid-state nanopores. ACS Nano 2016, 10, 8861–8870.

[49]

Wanunu, M.; Cohen-Karni, D.; Johnson, R. R.; Fields, L.; Benner, J.; Peterman, N.; Zheng, Y.; Klein, M. L.; Drndic, M. Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J. Am. Chem. Soc. 2011, 133, 486–492.

[50]

Fologea, D.; Ledden, B.; McNabb, D. S.; Li, J. L. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 2007, 91, 053901.

[51]

Yusko, E. C.; Johnson, J. M.; Majd, S.; Prangkio, P.; Rollings, R. C.; Li, J. L.; Yang, J.; Mayer, M. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 2011, 6, 253–260.

[52]

Oukhaled, A.; Cressiot, B.; Bacri, L.; Pastoriza-Gallego, M.; Betton, J. M.; Bourhis, E.; Jede, R.; Gierak, J.; Auvray, L.; Pelta, J. Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano 2011, 5, 3628–3638.

[53]

Asandei, A.; Schiopu, I.; Chinappi, M.; Seo, C. H.; Park, Y.; Luchian, T. Electroosmotic trap against the electrophoretic force near a protein nanopore reveals peptide dynamics during capture and translocation. ACS Appl. Mater. Interfaces 2016, 8, 13166–13179.

[54]

Firnkes, M.; Pedone, D.; Knezevic, J.; Döblinger, M.; Rant, U. Electrically facilitated translocations of proteins through silicon nitride nanopores: Conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Lett. 2010, 10, 2162–2167.

[55]

Sutherland, T. C.; Long, Y. T.; Stefureac, R. I.; Bediako-Amoa, I.; Kraatz, H. B.; Lee, J. S. Structure of peptides investigated by nanopore analysis. Nano Lett. 2004, 4, 1273–1277.

[56]

Giamblanco, N.; Coglitore, D.; Janot, J.-M.; Coulon, P. E.; Charlot, B.; Balme, S. Detection of protein aggregate morphology through single antifouling nanopore. Sensor. Actuat. B: Chem 2018, 260, 736–745.

[57]

Tanimoto, I. M. F.; Cressiot, B.; Jarroux, N.; Roman, J.; Patriarche, G.; Le Pioufle, B.; Pelta, J.; Bacri, L. Selective target protein detection using a decorated nanopore into a microfluidic device. Biosens. Bioelectron. 2021, 183, 113195.

[58]

Thakur, A. K.; Movileanu, L. Single-molecule protein detection in a biofluid using a quantitative nanopore sensor. ACS Sens. 2019, 4, 2320–2326.

[59]

Waduge, P.; Hu, R.; Bandarkar, P.; Yamazaki, H.; Cressiot, B.; Zhao, Q.; Whitford, P. C.; Wanunu, M. Nanopore-based measurements of protein size, fluctuations, and conformational changes. ACS Nano 2017, 11, 5706–5716.

[60]

Kowalczyk, S. W.; Kapinos, L.; Blosser, T. R.; Magalhães, T.; van Nies, P.; Lim, R. Y. H.; Dekker, C. Single-molecule transport across an individual biomimetic nuclear pore complex. Nat. Nanotechnol. 2011, 6, 433–438.

[61]

Rotem, D.; Jayasinghe, L.; Salichou, M.; Bayley, H. Protein detection by nanopores equipped with aptamers. J. Am. Chem. Soc. 2012, 134, 2781–2787.

[62]

Reynaud, L.; Bouchet-Spinelli, A.; Janot, J. M.; Buhot, A.; Balme, S.; Raillon, C. Discrimination of α-thrombin and γ-thrombin using aptamer-functionalized nanopore sensing. Anal. Chem. 2021, 93, 7889–7897.

[63]

Jia, W. D.; Hu, C. Z.; Wang, Y. Q.; Gu, Y. M.; Qian, G. R.; Du, X. Y.; Wang, L. Y.; Liu, Y.; Cao, J.; Zhang, S. Y. et al. Programmable nano-reactors for stochastic sensing. Nat. Commun. 2021, 12, 5811.

[64]

Sze, J. Y. Y.; Ivanov, A. P.; Cass, A. E. G.; Edel, J. B. Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nat. Commun. 2017, 8, 1552.

[65]

Lucas, F. L. R.; Sarthak, K.; Lenting, E. M.; Coltan, D.; van der Heide, N. J.; Versloot, R. C. A.; Aksimentiev, A.; Maglia, G. The manipulation of the internal hydrophobicity of FraC nanopores augments peptide capture and recognition. ACS Nano 2021, 15, 9600–9613.

[66]

Zernia, S.; van der Heide, N. J.; Galenkamp, N. S.; Gouridis, G.; Maglia, G. Current blockades of proteins inside nanopores for real-time metabolome analysis. ACS Nano 2020, 14, 2296–2307.

[67]
Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95.
[68]

Lin, Y.; Ying, Y. L.; Shi, X.; Liu, S. C.; Long, Y. T. Direct sensing of cancer biomarkers in clinical samples with a designed nanopore. Chem. Commun. 2017, 53, 11564–11567.

[69]

Greninger, A. L.; Naccache, S. N.; Federman, S.; Yu, G. X.; Mbala, P.; Bres, V.; Stryke, D.; Bouquet, J.; Somasekar, S.; Linnen, J. M. et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med. 2015, 7, 99.

[70]

Xu, Y. F.; Lewandowski, K.; Jeffery, K.; Downs, L. O.; Foster, D.; Sanderson, N. D.; Kavanagh, J.; Vaughan, A.; Salvagno, C.; Vipond, R. et al. Nanopore metagenomic sequencing to investigate nosocomial transmission of human metapneumovirus from a unique genetic group among haematology patients in the united kingdom. J. Infect. 2020, 80, 571–577.

[71]

Lewandowski, K.; Xu, Y. F.; Pullan, S. T.; Lumley, S. F.; Foster, D.; Sanderson, N.; Vaughan, A.; Morgan, M.; Bright, N.; Kavanagh, J. et al. Metagenomic nanopore sequencing of influenza virus direct from clinical respiratory samples. J. Clin. Microbiol. 2019, 58, e00963–19.

[72]

Kafetzopoulou, L. E.; Pullan, S. T.; Lemey, P.; Suchard, M. A.; Ehichioya, D. U.; Pahlmann, M.; Thielebein, A.; Hinzmann, J.; Oestereich, L.; Wozniak, D. M. et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 2019, 363, 74–77.

[73]

Wang, M.; Fu, A. S.; Hu, B.; Tong, Y. Q.; Liu, R.; Liu, Z.; Gu, J. S.; Xiang, B.; Liu, J. H.; Jiang, W. et al. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Small 2020, 16, 2002169.

[74]

Keita, A. K.; Koundouno, F. R.; Faye, M.; Düx, A.; Hinzmann, J.; Diallo, H.; Ayouba, A.; Le Marcis, F.; Soropogui, B.; Ifono, K. et al. Resurgence of Ebola virus in 2021 in guinea suggests a new paradigm for outbreaks. Nature 2021, 597, 539–543.

[75]
Oxford Nanopore Technologies. 200 Oxford Nanopore Sequencers Have Left Uk for China, to Support Rapid, Near-Sample Coronavirus Sequencing for Outbreak Surveillance [Online]. Oxford Nanopore Technologies: Oxford, 2020. https://nanoporetech.com/about-us/news/200-oxford-nanopore-sequencers-have-left-uk-china-support-rapid-near-sample (accessed Jan 29, 2022).
[76]

Tang, Z. F. ; Nouri, R. ; Dong, M. ; Yang, J. B. ; Greene, W. ; Zhu, Y. S. ; Yon, M. ; Nair, M. S. ; Kuchipudi, S. V. ; Guan, W. H. Rapid detection of novel coronavirus SARS-CoV-2 by RT-LAMP coupled solid-state nanopores. Biosens. Bioelectron. 2022, 197, 113759.

[77]

Bull, R. A.; Adikari, T. N.; Ferguson, J. M.; Hammond, J. M.; Stevanovski, I.; Beukers, A. G.; Naing, Z.; Yeang, M.; Verich, A.; Gamaarachchi, H. et al. Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis. Nat. Commun. 2020, 11, 6272.

[78]

Li, J.; Wang, H. Q.; Mao, L. F.; Yu, H.; Yu, X. F.; Sun, Z.; Qian, X.; Cheng, S.; Chen, S. C.; Chen, J. F. et al. Rapid genomic characterization of SARS-CoV-2 viruses from clinical specimens using nanopore sequencing. Sci. Rep. 2020, 10, 17492.

[79]

Munnink, B. B. O.; Nieuwenhuijse, D. F.; Stein, M.; O’Toole, Á.; Haverkate, M.; Mollers, M.; Kamga, S. K.; Schapendonk, C.; Pronk, M.; Lexmond, P. et al. Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. Nat. Med. 2020, 26, 1405–1410.

[80]

Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E. J.; Msomi, N. et al. Detection of a SARS-CoV-2 variant of concern in south Africa. Nature 2021, 592, 438–443.

[81]

Arima, A.; Tsutsui, M.; Yoshida, T.; Tatematsu, K.; Yamazaki, T.; Yokota, K.; Kuroda, S.; Washio, T.; Baba, Y.; Kawai, T. Digital pathology platform for respiratory tract infection diagnosis via multiplex single-particle detections. ACS Sens. 2020, 5, 3398–3403.

[82]

Arima, A.; Tsutsui, M.; Harlisa, I. H.; Yoshida, T.; Tanaka, M.; Yokota, K.; Tonomura, W.; Taniguchi, M.; Okochi, M.; Washio, T. et al. Selective detections of single-viruses using solid-state nanopores. Sci. Rep. 2018, 8, 16305.

[83]

Arima, A.; Tsutsui, M.; Washio, T.; Baba, Y.; Kawai, T. Solid-state nanopore platform integrated with machine learning for digital diagnosis of virus infection. Anal. Chem. 2021, 93, 215–227.

[84]

Gu, L. Q.; Braha, O.; Conlan, S.; Cheley, S.; Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 1999, 398, 686–690.

[85]

Wu, H. C.; Bayley, H. Single-molecule detection of nitrogen mustards by covalent reaction within a protein nanopore. J. Am. Chem. Soc. 2008, 130, 6813–6819.

[86]

Prajapati, J. D.; Kleinekathöfer, U.; Winterhalter, M. How to enter a bacterium: Bacterial porins and the permeation of antibiotics. Chem. Rev. 2021, 121, 5158–5192.

[87]

Li, F. M.; Liang, Z.; Zheng, X.; Zhao, W.; Wu, M.; Wang, Z. Y. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquat. Toxicol. 2015, 158, 1–13.

[88]

Schaumann, G. E.; Philippe, A.; Bundschuh, M.; Metreveli, G.; Klitzke, S.; Rakcheev, D.; Grün, A.; Kumahor, S. K.; Kühn, M.; Baumann, T. et al. Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts. Sci. Total Environ. 2015, 535, 3–19.

[89]

Book, F.; Backhaus, T. Aquatic ecotoxicity of manufactured silica nanoparticles: A systematic review and meta-analysis. Sci. Total Environ. 2022, 806, 150893.

[90]

Chen, L. J.; Liu, J.; Zhang, Y. L.; Zhang, G. L.; Kang, Y. Y.; Chen, A. J.; Feng, X. L.; Shao, L. Q. The toxicity of silica nanoparticles to the immune system. Nanomedicine 2018, 13, 1939–1962.

[91]

Zhang, C. Q.; Hu, Z. Q.; Deng, B. L. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Res. 2016, 88, 403–427.

[92]

McGillicuddy, E.; Murray, I.; Kavanagh, S.; Morrison, L.; Fogarty, A.; Cormican, M.; Dockery, P.; Prendergast, M.; Rowan, N.; Morris, D. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci. Total Environ. 2017, 575, 231–246.

[93]

Zhang, W. C.; Xiao, B. D.; Fang, T. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity. Chemosphere 2018, 191, 324–334.

[94]

Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605.

[95]

Horton, A. A.; Walton, A.; Spurgeon, D. J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141.

[96]
Titanium Dioxide Market by Grade (Rutile, Anatase), Process (Sulfate, Chloride), Application (Paints & Coating, Plastics, Paper, Inks), & Region (North America, Europe, Asia Pacific, MEA, South America)-Trends and Forecasts up to 2026 [Online]. 2021. https://www.researchandmarkets.com/reports/5359990/titanium-dioxide-market-by-grade-rutile#src-pos-2 (accessed Jan 26, 2022).
[97]
Reports and Data. Silicon Dioxide Market [Online]. Marketysers Global Consulting LLP, 2020. https://www.reportsanddata.com/report-detail/silicon-dioxide-market (accessed Jan 26, 2022).
[98]
Ahuja, K. ; Rawat, A. Silver Nanoparticles Market Size and Share [Online]. Global Market Insights: Selbyville, 2020. https://www.gminsights.com/industry-analysis/silver-nanoparticles-market (accessed Jan 26, 2022).
[99]

Bacri, L.; Oukhaled, A. G.; Schiedt, B.; Patriarche, G.; Bourhis, E.; Gierak, J.; Pelta, J.; Auvray, L. Dynamics of colloids in single solid-state nanopores. J. Phys. Chem. B 2011, 115, 2890–2898.

[100]

Tsutsui, M.; Yokota, K.; Yoshida, T.; Hotehama, C.; Kowada, H.; Esaki, Y.; Taniguchi, M.; Washio, T.; Kawai, T. Identifying single particles in air using a 3D-integrated solid-state pore. ACS Sens. 2019, 4, 748–755.

[101]

Kangasluoma, J.; Attoui, M. Review of Sub-3 Nm condensation particle counters, calibrations, and cluster generation methods. Aerosol Sci. Technol. 2019, 53, 1277–1310.

[102]

Ploetz, E.; Engelke, H.; Lächelt, U.; Wuttke, S. The chemistry of reticular framework nanoparticles: MOF, ZIF, and COF materials. Adv. Funct. Mater. 2020, 30, 1909062.

[103]

Christoff-Tempesta, T.; Cho, Y.; Kim, D. Y.; Geri, M.; Lamour, G.; Lew, A. J.; Zuo, X. B.; Lindemann, W. R.; Ortony, J. H. Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads. Nat. Nanotechnol. 2021, 16, 447–454.

[104]

Butt, H. J. Electrostatic interaction in atomic force microscopy. Biophys. J. 1991, 60, 777–785.

[105]

Lamour, G.; Allard, A.; Pelta, J.; Labdi, S.; Lenz, M.; Campillo, C. Mapping and modeling the nanomechanics of bare and protein-coated lipid nanotubes. Phys. Rev. X 2020, 10, 011031.

[106]

Carney, R. P.; Astier, Y.; Carney, T. M.; Voïtchovsky, K.; Silva, P. H. J.; Stellacci, F. Electrical method to quantify nanoparticle interaction with lipid bilayers. ACS Nano 2013, 7, 932–942.

[107]

Langevin, D.; Raspaud, E.; Mariot, S.; Knyazev, A.; Stocco, A.; Salonen, A.; Luch, A.; Haase, A.; Trouiller, B.; Relier, C. et al. Towards reproducible measurement of nanoparticle size using dynamic light scattering: Important controls and considerations. NanoImpact 2018, 10, 161–167.

[108]

DeBlois, R. W.; Bean, C. P. Counting and sizing of submicron particles by the resistive pulse technique. Rev. Sci. Instrum. 1970, 41, 909–916.

[109]

Cabello-Aguilar, S.; Chaaya, A. A.; Bechelany, M.; Pochat-Bohatier, C.; Balanzat, E.; Janot, J. M.; Miele, P.; Balme, S. Dynamics of polymer nanoparticles through a single artificial nanopore with a high-aspect-ratio. Soft Matter 2014, 10, 8413–8419.

[110]

Ito, T.; Sun, L.; Bevan, M. A.; Crooks, R. M. Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir 2004, 20, 6940–6945.

[111]

Petrossian, L.; Wilk, S. J.; Joshi, P.; Goodnick, S. M.; Thornton, T. J. Demonstration of coulter counting through a cylindrical solid state nanopore. J. Phys.: Conf. Ser. 2008, 109, 012028.

[112]

Arjmandi, N.; van Roy, W.; Lagae, L. Measuring mass of nanoparticles and viruses in liquids with nanometer-scale pores. Anal. Chem. 2014, 86, 4637–4641.

[113]

Tsutsui, M.; Hongo, S.; He, Y. H.; Taniguchi, M.; Gemma, N.; Kawai, T. Single-nanoparticle detection using a low-aspect-ratio pore. ACS Nano 2012, 6, 3499–3505.

[114]

Liu, S.; Zhao, Y.; Parks, J. W.; Deamer, D. W.; Hawkins, A. R.; Schmidt, H. Correlated electrical and optical analysis of single nanoparticles and biomolecules on a nanopore-gated optofluidic chip. Nano Lett. 2014, 14, 4816–4820.

[115]

Roman, J.; Jarroux, N.; Patriarche, G.; Français, O.; Pelta, J.; Le Pioufle, B.; Bacri, L. Functionalized solid-state nanopore integrated in a reusable microfluidic device for a better stability and nanoparticle detection. ACS Appl. Mater. Interfaces 2017, 9, 41634–41640.

[116]

Coglitore, D.; Merenda, A.; Giamblanco, N.; Dumée, L. F.; Janot, J. M.; Balme, S. Metal alloy solid-state nanopores for single nanoparticle detection. Phys. Chem. Chem. Phys. 2018, 20, 12799–12807.

[117]

Davenport, M.; Healy, K.; Pevarnik, M.; Teslich, N.; Cabrini, S.; Morrison, A. P.; Siwy, Z. S.; Létant, S. E. The role of pore geometry in single nanoparticle detection. ACS Nano 2012, 6, 8366–8380.

[118]

Gadaleta, A.; Biance, A. L.; Siria, A.; Bocquet, L. Ultra-sensitive flow measurement in individual nanopores through pressure-driven particle translocation. Nanoscale 2015, 7, 7965–7970.

[119]

Balme, S.; Lepoitevin, M.; Dumé, L. F.; Bechelany, M.; Janot, J. M. Diffusion dynamics of latex nanoparticles coated with SsDNA across a single nanopore. Soft Matter 2017, 13, 496–502.

[120]

Cao, Y.; Lin, Y.; Qian, R. C.; Ying, Y. L.; Si, W.; Sha, J. J.; Chen, Y. F.; Long, Y. T. Evidence of single-nanoparticle translocation through a solid-state nanopore by plasmon resonance energy transfer. Chem. Commun. 2016, 52, 5230–5233.

[121]

Tan, S. W.; Wang, L.; Liu, H.; Wu, H. W.; Liu, Q. J. Single nanoparticle translocation through chemically modified solid nanopore. Nanoscale Res. Lett. 2016, 11, 50.

[122]

Darvish, A.; Goyal, G.; Aneja, R.; Sundaram, R. V. K.; Lee, K.; Ahn, C. W.; Kim, K. B.; Vlahovska, P. M.; Kim, M. J. Nanoparticle mechanics: Deformation detection via nanopore resistive pulse sensing. Nanoscale 2016, 8, 14420–14431.

[123]

Venta, K. E.; Zanjani, M. B.; Ye, X. C.; Danda, G.; Murray, C. B.; Lukes, J. R.; Drndić, M. Gold nanorod translocations and charge measurement through solid-state nanopores. Nano Lett. 2014, 14, 5358–5364.

[124]

Lan, W. J.; White, H. S. Diffusional motion of a particle translocating through a nanopore. ACS Nano 2012, 6, 1757–1765.

[125]

Meyer, N.; Janot, J. M.; Lepoitevin, M.; Smietana, M.; Vasseur, J. J.; Torrent, J.; Balme, S. Machine learning to improve the sensing of biomolecules by conical track-etched nanopore. Biosensors 2020, 10, 140.

[126]

Fu, J. Y.; Wu, L. L.; Qiao, Y.; Tu, J.; Lu, Z. H. Microfluidic systems applied in solid-state nanopore sensors. Micromachines 2020, 11, 332.

[127]

Kang, X. F.; Cheley, S.; Rice-Ficht, A. C.; Bayley, H. A storable encapsulated bilayer chip containing a single protein nanopore. J. Am. Chem. Soc. 2007, 129, 4701–4705.

[128]

Kannan, N.; Vakeesan, D. Solar energy for future world: A review. Renewable Sustainable Energy Rev. 2016, 62, 1092–1105.

[129]

Wang, Z. M.; Liu, W. M. Wind energy potential assessment based on wind speed, its direction and power data. Sci. Rep. 2021, 11, 16879.

[130]

Barthelmie, R. J.; Pryor, S. C. Potential contribution of wind energy to climate change mitigation. Nat. Climate Change 2014, 4, 684–688.

[131]

Zhang, L. X.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. Biomass-derived materials for electrochemical energy storages. Prog. Polym. Sci. 2015, 43, 136–164.

[132]

Jolie, E.; Scott, S.; Faulds, J.; Chambefort, I.; Axelsson, G.; Gutiérrez-Negrín, L. C.; Regenspurg, S.; Ziegler, M.; Ayling, B.; Richter, A. et al. Geological controls on geothermal resources for power generation. Nat. Rev. Earth Environ. 2021, 2, 324–339.

[133]

Hsu, J. P.; Su, T. C.; Lin, C. Y.; Tseng, S. Power generation from a pH-regulated nanochannel through reverse electrodialysis: Effects of nanochannel shape and non-uniform H+ distribution. Electrochim. Acta 2019, 294, 84–92.

[134]

Tseng, S.; Li, Y. M.; Lin, C. Y.; Hsu, J. P. Salinity gradient power: Optimization of nanopore size. Electrochim. Acta 2016, 219, 790–797.

[135]

Post, J. W.; Hamelers, H. V. M.; Buisman, C. J. N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. Environ. Sci. Technol. 2008, 42, 5785–5790.

[136]

Wang, Z. X.; Wang, L.; Elimelech, M. Viability of harvesting salinity gradient (blue) energy by nanopore-based osmotic power generation. Engineering 2022, 9, 51–60.

[137]

Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.

[138]

Helfer, F.; Lemckert, C.; Anissimov, Y. G. Osmotic power with pressure retarded osmosis: Theory, performance and trends-a review. J. Memb. Sci. 2014, 453, 337–358.

[139]

Yip, N. Y.; Elimelech, M. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environ. Sci. Technol. 2012, 46, 5230–5239.

[140]

Yip, N. Y.; Vermaas, D. A.; Nijmeijer, K.; Elimelech, M. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Environ. Sci. Technol. 2014, 48, 4925–4936.

[141]

Kim, J.; Kim, S. J.; Kim, D. K. Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores. Energy 2013, 51, 413–421.

[142]

Hong, J. G.; Zhang, B. P.; Glabman, S.; Uzal, N.; Dou, X. M.; Zhang, H. G.; Wei, X. Z.; Chen, Y. S. Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review. J. Memb. Sci. 2015, 486, 71–88.

[143]

Straub, A. P.; Deshmukh, A.; Elimelech, M. Pressure-retarded osmosis for power generation from salinity gradients: Is it viable. Energy Environ. Sci. 2016, 9, 31–48.

[144]

Yip, N. Y.; Brogioli, D.; Hamelers, H. V. M.; Nijmeijer, K. Salinity gradients for sustainable energy: Primer, progress, and prospects. Environ. Sci. Technol. 2016, 50, 12072–12094.

[145]

Nijmeijer, K.; Metz, S. Chapter 5 salinity gradient energy. Sustain. Sci. Eng. 2010, 2, 95–139.

[146]

Siria, A.; Bocquet, M. L.; Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 2017, 1, 0091.

[147]

Graf, M.; Lihter, M.; Unuchek, D.; Sarathy, A.; Leburton, J. P.; Kis, A.; Radenovic, A. Light-enhanced blue energy generation using MoS2 nanopores. Joule 2019, 3, 1549–1564.

[148]

Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 2013, 494, 455–458.

[149]

Macha, M.; Marion, S.; Nandigana, V. V. R.; Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 2019, 4, 588–605.

[150]

Liu, X.; He, M.; Calvani, D.; Qi, H. Y.; Gupta, K. B. S. S.; de Groot, H. J. M.; Sevink, G. J. A.; Buda, F.; Kaiser, U.; Schneider, G. F. Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core-rim polycyclic aromatic hydrocarbons. Nat. Nanotechnol. 2020, 15, 307–312.

[151]

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

[152]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[153]

Vegge, T.; Tarascon, J. M.; Edström, K. Toward better and smarter batteries by combining AI with multisensory and self-healing approaches. Adv. Energy Mater. 2021, 11, 2100362.

[154]
Narayan, R. ; Laberty-Robert, C. ; Pelta, J. ; Tarascon, J. M. ; Dominko, R. Self-healing: An emerging technology for next-generation smart batteries. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202102652.
[155]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[156]

Vizintin, A.; Lozinšek, M.; Chellappan, R. K.; Foix, D.; Krajnc, A.; Mali, G.; Drazic, G.; Genorio, B.; Dedryvère, R.; Dominko, R. Fluorinated reduced graphene oxide as an interlayer in Li-S batteries. Chem. Mater. 2015, 27, 7070–7081.

[157]

Busche, M. R.; Adelhelm, P.; Sommer, H.; Schneider, H.; Leitner, K.; Janek, J. Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. J. Power Sources 2014, 259, 289–299.

[158]

Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56.

[159]

Patel, M. U. M.; Demir-Cakan, R.; Morcrette, M.; Tarascon, J. M.; Gaberscek, M.; Dominko, R. Li-S battery analyzed by UV/Vis in operando mode. ChemSusChem 2013, 6, 1177–1181.

[160]

Hua, X.; Zhang, T.; Offer, G. J.; Marinescu, M. Towards online tracking of the shuttle effect in lithium sulfur batteries using differential thermal voltammetry. J. Energy Storage 2019, 21, 765–772.

[161]

Sathiya, M.; Leriche, J. B.; Salager, E.; Gourier, D.; Tarascon, J. M.; Vezin, H. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat. Commun. 2015, 6, 6276.

[162]

Lin, F.; Liu, Y. J.; Yu, X. Q.; Cheng, L.; Singer, A.; Shpyrko, O. G.; Xin, H. L.; Tamura, N.; Tian, C. X.; Weng, T. C. et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev. 2017, 117, 13123–13186.

[163]

Zheng, D.; Qu, D. Y.; Yang, X. Q.; Yu, X. Q.; Lee, H. S.; Qu, D. Y. Quantitative and qualitative determination of polysulfide species in the electrolyte of a lithium-sulfur battery using HPLC ESI/MS with one-step derivatization. Adv. Energy Mater. 2015, 5, 140188.

[164]

Huang, J. Q.; Blanquer, L. A.; Bonefacino, J.; Logan, E. R.; Corte, D. A. D.; Delacourt, C.; Gallant, B. M.; Boles, S. T.; Dahn, J. R.; Tam, H. Y. et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat. Energy 2020, 5, 674–683.

[165]

Huang, J. Q.; Han, X. L.; Liu, F.; Gervillié, C.; Blanquer, L. A.; Guo, T.; Tarascon, J. M. Monitoring battery electrolyte chemistry via in-operando tilted fiber Bragg grating sensors. Energy Environ. Sci. 2021, 14, 6464–6475.

[166]

Bétermier, F.; Cressiot, B.; Di Muccio, G.; Jarroux, N.; Bacri, L.; Rocca, B. M. D.; Chinappi, M.; Pelta, J.; Tarascon, J. M. Single-sulfur atom discrimination of polysulfides with a protein nanopore for improved batteries. Commun. Mater. 2020, 1, 59.

[167]

Meier, W.; Nardin, C.; Winterhalter, M. Reconstitution of channel proteins in (polymerized) ABA triblock copolymer membranes. Angew. Chem., Int. Ed. 2000, 39, 4599–4602.

[168]

Ma, T. J.; Janot, J. M.; Balme, S. Track-etched nanopore/membrane: From fundamental to applications. Small Methods 2020, 4, 2000366.

[169]

Hall, A. R.; Scott, A.; Rotem, D.; Mehta, K. K.; Bayley, H.; Dekker, C. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nat. Nanotechnol. 2010, 5, 874–877.

[170]

Cabello-Aguilar, S.; Balme, S.; Chaaya, A. A.; Bechelany, M.; Balanzat, E.; Janot, J. M.; Pochat-Bohatier, C.; Miele, P.; Dejardin, P. Slow translocation of polynucleotides and their discrimination by α-hemolysin inside a single track-etched nanopore designed by atomic layer deposition. Nanoscale 2013, 5, 9582–9586.

[171]

Cressiot, B.; Greive, S. J.; Mojtabavi, M.; Antson, A. A.; Wanunu, M. Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors. Nat. Commun. 2018, 9, 4652.

[172]

Lee, P. L. J.; Thangavel, V.; Guery, C.; Trautmann, C.; Toimil-Molares, M. E.; Morcrette, M. Etched ion-track membranes as tailored separators in Li-S batteries. Nanotechnology 2021, 32, 365401.

[173]

Liu, Y. X.; Kearney, J.; Mahmoud, M.; Kille, B.; Sedlazeck, F. J.; Treangen, T. J. Rescuing low frequency variants within intra-host viral populations directly from Oxford Nanopore sequencing data. Nat. Commun. 2022, 13, 1321.

[174]

Cressiot, B.; Bacri, L.; Pelta, J. The promise of nanopore technology: Advances in the discrimination of protein sequences and chemical modifications. Small Methods 2020, 4, 2000090.

[175]

Restrepo-Pérez, L.; Joo, C.; Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 2018, 13, 786–796.

[176]

Ouldali, H.; Sarthak, K.; Ensslen, T.; Piguet, F.; Manivet, P.; Pelta, J.; Behrends, J. C.; Aksimentiev, A.; Oukhaled, A. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 2020, 38, 176–181.

[177]

Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Manivet, P.; Pelta, J.; Oukhaled, A. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 2018, 9, 966.

[178]

Asandei, A.; Rossini, A. E.; Chinappi, M.; Park, Y.; Luchian, T. Protein nanopore-based discrimination between selected neutral amino acids from polypeptides. Langmuir 2017, 33, 14451–14459.

[179]

Huang, G.; Voet, A.; Maglia, G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat. Commun. 2019, 10, 835.

[180]

Rosen, C. B.; Rodriguez-Larrea, D.; Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol. 2014, 32, 179–181.

[181]

Restrepo-Pérez, L.; Huang, G.; Bohländer, P. R.; Worp, N.; Eelkema, R.; Maglia, G.; Joo, C.; Dekker, C. Resolving chemical modifications to a single amino acid within a peptide using a biological nanopore. ACS Nano 2019, 13, 13668–13676.

[182]

Restrepo-Pérez, L.; Wong, C. H.; Maglia, G.; Dekker, C.; Joo, C. Label-free detection of post-translational modifications with a nanopore. Nano Lett. 2019, 19, 7957–7964.

[183]

Ying, Y. L.; Yang, J.; Meng, F. N.; Li, S.; Li, M. Y.; Long, Y. T. A nanopore phosphorylation sensor for single oligonucleotides and peptides. Research 2019, 2019, 1050735.

[184]

Lucas, F. L. R.; Versloot, R. C. A.; Yakovlieva, L.; Walvoort, M. T. C.; Maglia, G. Protein identification by nanopore peptide profiling. Nat. Commun. 2021, 12, 5795.

[185]

Brinkerhoff, H.; Kang, A. S. W.; Liu, J. Q.; Aksimentiev, A.; Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 2021, 374, 1509–1513.

[186]

Yan, S. H.; Zhang, J. Y.; Wang, Y.; Guo, W. M.; Zhang, S. Y.; Liu, Y.; Cao, J.; Wang, Y. Q.; Wang, L. Y.; Ma, F. B. et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis porin A (MspA) nanopore. Nano Lett. 2021, 21, 6703–6710.

[187]

Chen, Z. J.; Wang, Z. Q.; Xu, Y.; Zhang, X. C.; Tian, B. X.; Bai, J. W. Controlled movement of SsDNA conjugated peptide through Mycobacterium Smegmatis porin A (MspA) nanopore by a helicase motor for peptide sequencing application. Chem. Sci. 2021, 12, 15750–15756.

[188]

Wang, H. Y.; Ying, Y. L.; Li, Y.; Kraatz, H. B.; Long, Y. T. Nanopore analysis of β-amyloid peptide aggregation transition induced by small molecules. Anal. Chem. 2011, 83, 1746–1752.

[189]

Meyer, N.; Arroyo, N.; Janot, J. M.; Lepoitevin, M.; Stevenson, A.; Nemeir, I. A.; Perrier, V.; Bougard, D.; Belondrade, M.; Cot, D. et al. Detection of amyloid-β fibrils using track-etched nanopores: Effect of geometry and crowding. ACS Sens. 2021, 6, 3733–3743.

[190]

Meyer, N.; Arroyo, N.; Baldelli, M.; Coquart, N.; Janot, J. M.; Perrier, V.; Chinappi, M.; Picaud, F.; Torrent, J.; Balme, S. Conical nanopores highlight the pro-aggregating effects of pyrimethanil fungicide on Aβ(1-42) peptides and dimeric splitting phenomena. Chemosphere 2022, 291, 132733.

Nano Research
Pages 9906-9920
Cite this article:
Fujinami Tanimoto IM, Cressiot B, Greive SJ, et al. Focus on using nanopore technology for societal health, environmental, and energy challenges. Nano Research, 2022, 15(11): 9906-9920. https://doi.org/10.1007/s12274-022-4379-2
Topics:
Part of a topical collection:

1915

Views

15

Crossref

20

Web of Science

16

Scopus

3

CSCD

Altmetrics

Received: 31 January 2022
Revised: 11 March 2022
Accepted: 30 March 2022
Published: 20 May 2022
© Tsinghua University Press 2022
Return