AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A dual plasmonic core–shell Pt/[TiN@TiO2] catalyst for enhanced photothermal synergistic catalytic activity of VOCs abatement

Anqi Li1Qianpeng Zhang2,3Shuaiqi Zhao1Yanan Chong1Peng Wu1Yifei Li1Xiaojing Jin1( )Guangxu Chen1Yongcai Qiu1,4( )Shihe Yang5Daiqi Ye1
Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Guangzhou HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou 511458, China
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, Shenzhen 518055, China
Show Author Information

Graphical Abstract

A dual plasmonic core–shell Pt/[TiN@TiO2] catalyst obtained by quenching exhibited excellent photothermal synergistic catalytic oxidation of toluene, benefiting from the integration of the photocatalysis and thermal effect.

Abstract

Volatile organic compounds (VOCs) are ubiquitous organic pollutants affecting atmospheric environment and human health. The development of new efficient and environmentally friendly materials utilizing photothermal synergistic catalysis for purification of VOCs is still challenging. Herein, we design and prepare a core–shell TiN@TiO2 nanostructure integrating with nanoscaled Pt (Pt/[TiN@TiO2]) by an attractive quenching method. The strong light-harvesting capability of Pt and TiN components improve light-to-heat utilization efficiency by their intrinsic surface plasmon resonance effect. The TiO2 component upon the surface and the coexisting coupling effect of Pt0 and Pt2+ enhance the photocatalytic effect of the system. As a result, the catalytic performance is significantly improved with toluene (120 ppm) conversion of 100% under the gas hourly space velocity of 72,000 mL·g−1·h−1 and light illumination of 500 mW·cm−2. The desired catalyst thus achieves highly efficient coupling effect of photocatalysis and light-to-heat conversion for promoting VOCs abatement.

Electronic Supplementary Material

Download File(s)
12274_2022_4380_MOESM1_ESM.pdf (2.8 MB)

References

1

Li, W. B.; Wang, J. X.; Gong, H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today 2009, 148, 81–87.

2

Ojala, S.; Pitkäaho, S.; Laitinen, T.; Koivikko, N. N.; Brahmi, R.; Gaálová, J.; Matejova, L.; Kucherov, A.; Päivärinta, S.; Hirschmann, C. et al. Catalysis in VOC abatement. Top. Catal. 2011, 54, 1224–1256.

3

George, C.; Ammann, M.; D'Anna, B.; Donaldson, D. J.; Nizkorodov, S. A. Heterogeneous photochemistry in the atmosphere. Chem. Rev. 2015, 115, 4218–4258.

4

Wu, Z. J.; Zeng, F. C.; Zhang, L.; Zhao, S. X.; Wu, L. H.; Qin, H.; Xing, D. Defect-rich titanium nitride nanoparticle with high microwave-acoustic conversion efficiency for thermoacoustic imaging-guided deep tumor therapy. Nano Res. 2021, 14, 2717–2727.

5

Zhang, Z. X.; Jiang, Z.; Shangguan, W. F. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catal. Today 2016, 264, 270–278.

6

Enesca, A.; Cazan, C. Volatile organic compounds (VOCs) removal from indoor air by heterostructures/composites/doped photocatalysts: A mini-review. Nanomaterials 2020, 10, 1965.

7

Chen, J.; Li, Y. Z.; Fang, S. M.; Yang, Y.; Zhao, X. J. UV–Vis–infrared light-driven thermocatalytic abatement of benzene on Fe doped OMS-2 nanorods enhanced by a novel photoactivation. Chem. Eng. J. 2018, 332, 205–215.

8

Liang, M. X.; Bai, X. T.; Yu, F.; Ma, J. A confinement strategy to in-situ prepare a peanut-like N-doped, C-wrapped TiO2 electrode with an enhanced desalination capacity and rate for capacitive deionization. Nano Res. 2021, 14, 684–691.

9

Liu, F.; Zeng, M.; Li, Y. Z.; Yang, Y.; Mao, M. Y.; Zhao, X. J. UV–Vis–infrared light driven thermocatalytic activity of octahedral layered birnessite nanoflowers enhanced by a novel photoactivation. Adv. Funct. Mater. 2016, 26, 4518–4526.

10
Mao, M. Y. ; Li, Y. Z. ; Hou, J. T. ; Zeng, M. ; Zhao, X. J. Extremely efficient full solar spectrum light driven thermocatalytic activity for the oxidation of VOCs on OMS-2 nanorod catalyst. Appl. Catal. B: Environ. 2015, 174–175, 496–503.
11

Zhou, X. M.; Zolnhofer, E. M.; Nguyen, N. T.; Liu, N.; Meyer, K.; Schmuki, P. Stable Co-catalyst-free photocatalytic H2 evolution from oxidized titanium nitride nanopowders. Angew. Chem., Int. Ed. 2015, 54, 13385–13389.

12

Nair, V.; Muñoz-Batista, M. J.; Fernández-García, M.; Luque, R.; Colmenares, J. C. Thermo-photocatalysis: Environmental and energy applications. ChemSusChem 2019, 12, 2098–2116.

13

Wu, P.; Jin, X. J.; Qiu, Y. C.; Ye, D. Q. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts. Environ. Sci. Technol. 2021, 55, 4268–4286.

14

Zou, J. S.; Si, Z. C.; Cao, Y. D.; Ran, R.; Wu, X. D.; Weng, D. Localized surface plasmon resonance assisted photothermal catalysis of CO and toluene oxidation over Pd-CeO2 catalyst under visible light irradiation. J. Phys. Chem. C 2016, 120, 29116–29125.

15

Mao, M. Y.; Li, Y. Z.; Lv, H. Q.; Hou, J. T.; Zeng, M.; Ren, L.; Huang, H.; Zhao, X. J. Efficient UV–vis–IR light-driven thermocatalytic purification of benzene on a Pt/CeO2 nanocomposite significantly promoted by hot electron-induced photoactivation. Environ. Sci.: Nano 2017, 4, 373–384.

16

Kennedy III, J. C.; Datye, A. K. Photothermal heterogeneous oxidation of ethanol over Pt/TiO2. J. Catal. 1998, 179, 375–389.

17

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

18

Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, 632–635.

19

Kale, M. J.; Christopher, P. Plasmons at the interface. Science 2015, 349, 587–588.

20

Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Wei, J. Y.; Whangbo, M. H. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew. Chem., Int. Ed. 2008, 47, 7931–7933.

21

Li, Z. X.; Gong, Y. X.; Zhang, X.; Wen, Y. Y.; Yao, J. S.; Hu, M. L.; He, M.; Liu, J. H.; Li, R.; Wang, F. Q. et al. Plasmonic coupling-enhanced in situ photothermal nanoreactor with shape selective catalysis for C–C coupling reaction. Nano Res. 2020, 13, 2812–2818.

22

Rej, S.; Mascaretti, L.; Santiago, E. Y.; Tomanec, O.; Kment, Š.; Wang, Z. M.; Zbořil, R.; Fornasiero, P.; Govorov, A. O.; Naldoni, A. Determining plasmonic hot electrons and photothermal effects during H2 evolution with TiN-Pt nanohybrids. ACS Catal. 2020, 10, 5261–5271.

23

Ye, C. C.; Liu, J. Z.; Zhang, Q. H.; Jin, X. J.; Zhao, Y.; Pan, Z. H.; Chen, G. X.; Qiu, Y. C.; Ye, D. Q.; Gu, L. et al. Activating metal oxides nanocatalysts for electrocatalytic water oxidation by quenching-induced near-surface metal atom functionality. J. Am. Chem. Soc. 2021, 143, 14169–14177.

24

Su, M.; Pan, Z. H.; Chong, Y. N.; Ye, C. C.; Jin, X. J.; Wu, Q. Y.; Hu, Z.; Ye, D. Q.; Waterhouse, G. I. N.; Qiu, Y. C. et al. Boosting the electrochemical performance of hematite nanorods via quenching-induced metal single atom functionalization. J. Mater. Chem. A 2021, 9, 3492–3499.

25

Zhao, S. Q.; Jin, X. J.; Wu, P.; Zhao, Y.; Chen, G. X.; Li, Y. F.; Li, A. Q.; Ye, D. Q.; Qiu, Y. C. Cu2+-decorated porous Co3O4 nanosheets for photothermocatalytic oxidation of toluene. ACS Appl. Nano Mater. 2020, 3, 10454–10461.

26

Xiao, Y. H.; Zhan, G. H.; Fu, Z. G.; Pan, Z. C.; Xiao, C. M.; Wu, S. K.; Chen, C.; Hu, G. H.; Wei, Z. G. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction. Electrochim. Acta 2014, 141, 279–285.

27

Wu, P.; Dai, S. Q.; Chen, G. X.; Zhao, S. Q.; Xu, Z.; Fu, M. L.; Chen, P. R.; Chen, Q.; Jin, X. J.; Qiu, Y. C. et al. Interfacial effects in hierarchically porous α-MnO2/Mn3O4 heterostructures promote photocatalytic oxidation activity. Appl. Catal. B:Environ. 2020, 268, 118418.

28

Zhang, Q. P.; Tavakoli, M. M.; Gu, L. L.; Zhang, D. Q.; Tang, L.; Gao, Y.; Guo, J.; Lin, Y. J.; Leung, S. F.; Poddar, S. et al. Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat. Commun. 2019, 10, 727.

29

Zhang, Q. P.; Zhang, D. Q.; Gu, L. L.; Tsui, K. H.; Poddar, S.; Fu, Y.; Shu, L.; Fan, Z. Y. Three-dimensional perovskite nanophotonic wire array-based light-emitting diodes with significantly improved efficiency and stability. ACS Nano 2020, 14, 1577–1585.

30

Yang, P. H.; Chao, D. L.; Zhu, C. R.; Xia, X. H.; Zhang, Y. Q.; Wang, X. L.; Sun, P.; Tay, B. K.; Shen, Z. X.; Mai, W. J. et al. Ultrafast-charging supercapacitors based on corn-like titanium nitride nanostructures. Adv. Sci. 2016, 3, 1500299.

31

Yang, W. K.; Xu, W.; Wang, Y. D.; Chen, D. L.; Wang, X. H.; Cao, Y.; Wu, Q.; Tu, J. C.; Zhen, C. Photoelectrochemical glucose biosensor based on the heterogeneous facets of nanocrystalline TiO2/Au/glucose oxidase films. ACS Appl. Nano Mater. 2020, 3, 2723–2732.

32

Devivaraprasad, R.; Nalajala, N.; Bera, B.; Neergat, M. Electrocatalysis of oxygen reduction reaction on shape-controlled Pt and Pd nanoparticles—Importance of surface cleanliness and reconstruction. Front. Chem. 2019, 7, 648.

33

You, J. B.; Hong, Z. R.; Yang, Y.; Chen, Q.; Cai, M.; Song, T. B.; Chen, C. C.; Lu, S. R.; Liu, Y. S.; Zhou, H. P. et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 2014, 8, 1674–1680.

34

Leonardi, A. A.; Lo Faro, M. J.; Irrera, A. CMOS-compatible and low-cost thin film MACE approach for light-emitting Si NWs fabrication. Nanomaterials 2020, 10, 966.

35

Zhang, Z. L.; Qin, J. Q.; Shi, W. J.; Liu, Y. Y.; Zhang, Y.; Liu, Y. F.; Gao, H. P.; Mao, Y. L. Enhanced power conversion efficiency of perovskite solar cells with an up-conversion material of Er3+-Yb3+-Li+ Tri-doped TiO2. Nanoscale Res. Lett. 2018, 13, 147.

36

Yang, L. Q.; Huang, J. F.; Shi, L.; Cao, L. Y.; Yu, Q.; Jie, Y. N.; Fei, J.; Ouyang, H. B.; Ye, J. H. A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Appl. Catal. B:Environ. 2017, 204, 335–345.

37

Li, Y. Y.; Peng, Y. K.; Hu, L. S.; Zheng, J. W.; Prabhakaran, D.; Wu, S.; Puchtler, T. J.; Li, M.; Wong, K. Y.; Taylor, R. A. et al. Photocatalytic water splitting by N-TiO2 on MgO(111) with exceptional quantum efficiencies at elevated temperatures. Nat. Commun. 2019, 10, 4421.

38

Reddy, N. L.; Rao, V. N.; Vijayakumar, M.; Santhosh, R.; Anandan, S.; Karthik, M.; Shankar, M. V.; Reddy, K. R.; Shetti, N. P.; Nadagouda, M. N. et al. A review on frontiers in plasmonic nano-photocatalysts for hydrogen production. Int. J. Hydrogen Energy 2019, 44, 10453–10472.

39

Fu, J. Y.; Lym, J.; Zheng, W. Q.; Alexopoulos, K.; Mironenko, A. V.; Li, N.; Boscoboinik, J. A.; Su, D.; Weber, R. T.; Vlachos, D. G. C–O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides. Nat. Catal. 2020, 3, 446–453.

40

Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water–gas shift over supported Pt catalysts. Science 2015, 350, 189–192.

41

Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J. M. Venting temperature determines surface chemistry of magnetron sputtered TiN films. Appl. Phys. Lett. 2016, 108, 041603.

42

Marco, J. F.; Agudelo, A. C.; Gancedo, J. R.; Hanžel, D. Corrosion resistance of single TiN layers, Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray (Phohesion) test: An evaluation by XPS. Surf. Interface Anal. 1999, 27, 71–75.

43

Meng, D.; Zhang, S. D.; Thomas, T.; Zhao, R. Y.; Shi, Y.; Qu, F. D.; Yang, M. H. Platinum decorated mesoporous titanium nitride for fuel-cell type methanol gas sensor. Sens. Actuat. B:Chem. 2020, 308, 127713.

44

Huang, K.; Sasaki, K.; Adzic, R. R.; Xing, Y. C. Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO2 nanocoating catalyst support. J. Mater. Chem. 2012, 22, 16824–16832.

45

Wang, X.; Yuan, X. T.; Liu, X. Y.; Dong, W. J.; Dong, C. L.; Lou, M. H.; Li, J. C.; Lin, T. Q.; Huang, F. Q. Monodisperse Pt nanoparticles anchored on N-doped black TiO2 as high performance bifunctional electrocatalyst. J. Alloys Compd. 2017, 701, 669–675.

46

Tomita, A.; Miki, T.; Tai, Y. Effect of water treatment and Ce doping of Pt/Al2O3 catalysts on Pt sintering and propane oxidation. Res. Chem. Int. 2021, 47, 2935–2950.

47

Xiong, Z.; Wang, H. B.; Xu, N. Y.; Li, H. L.; Fang, B. Z.; Zhao, Y. C.; Zhang, J. Y.; Zheng, C. G. Photocatalytic reduction of CO2 on Pt2+-Pt0/TiO2 nanoparticles under UV/Vis light irradiation: A combination of Pt2+ doping and Pt nanoparticles deposition. Int. J. Hydrogen Energy 2015, 40, 10049–10062.

48

Xing, W. N.; Tu, W. G.; Ou, M.; Wu, S. Y.; Yin, S. M.; Wang, H. J.; Chen, G.; Xu, R. Anchoring active Pt2+/Pt0 hybrid nanodots on g-C3N4 nitrogen vacancies for photocatalytic H2 evolution. ChemSusChem 2019, 12, 2029–2034.

49

Shi, Y. J.; Wang, J. L.; Zhou, R. X. Pt-support interaction and nanoparticle size effect in Pt/CeO2-TiO2 catalysts for low temperature VOCs removal. Chemosphere 2021, 265, 129127.

50

Liu, H. H.; Tian, K. F.; Ning, J. Q.; Zhong, Y. J.; Zhang, Z. Y.; Hu, Y. One-step solvothermal formation of Pt nanoparticles decorated Pt2+-doped α-Fe2O3 nanoplates with enhanced photocatalytic O2 evolution. ACS Catal. 2019, 9, 1211–1219.

51

Ishii, S.; Sugavaneshwar, R. P.; Nagao, T. Titanium nitride nanoparticles as plasmonic solar heat transducers. J. Phys. Chem. C 2016, 120, 2343–2348.

52

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

53

Cai, S. C.; Li, J. J.; Yu, E. Q.; Chen, X.; Chen, J.; Jia, H. P. Strong photothermal effect of plasmonic Pt nanoparticles for efficient degradation of volatile organic compounds under solar light irradiation. ACS Appl. Nano Mater. 2018, 1, 6368–6377.

54

Zhang, N.; Han, C.; Xu, Y. J.; Foley IV, J. J.; Zhang, D. T.; Codrington, J.; Gray, S. K.; Sun, Y. G. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photonics 2016, 10, 473–482.

55

Zhang, R. Y.; Ma, Q. Y.; Liu, H. G.; Sun, T. Y.; Bi, J. C.; Song, Y.; Peng, S. Q.; Liang, L. Y.; Gao, J. H.; Cao, H. T. et al. Crystal orientation-dependent oxidation of epitaxial TiN films with tunable plasmonics. ACS Photonics 2021, 8, 847–856.

56

Gangadharan, D. T.; Xu, Z. H.; Liu, Y. L.; Izquierdo, R.; Ma, D. L. Recent advancements in plasmon-enhanced promising third-generation solar cells. Nanophotonics 2017, 6, 153–175.

57

Zheng, Z. K.; Tachikawa, T.; Majima, T. Single-particle study of Pt-modified au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc. 2014, 136, 6870–6873.

58

Jia, Z. X.; Wang, X. J.; Thevenet, F.; Rousseau, A. Dynamic probing of plasma-catalytic surface processes: Oxidation of toluene on CeO2. Plasma Processes Polym. 2017, 14, 1600114.

59

Ji, W. K.; Rui, Z. B.; Ji, H. B. Z-scheme Ag3PO4/Ag/SrTiO3 heterojunction for visible-light induced photothermal synergistic VOCs degradation with enhanced performance. Ind. Eng. Chem. Res. 2019, 58, 13950–13959.

60

Zhang, M.; Cai, S. C.; Li, J. J.; Elimian, E. A.; Chen, J.; Jia, H. P. Ternary multifunctional catalysts of polymeric carbon nitride coupled with Pt-embedded transition metal oxide to enhance light-driven photothermal catalytic degradation of VOCs. J. Hazard. Mater. 2021, 412, 125266.

61

Mo, S. P.; Zhang, Q.; Li, J. Q.; Sun, Y. H.; Ren, Q. M.; Zou, S. B.; Zhang, Q.; Lu, J. H.; Fu, M. L.; Mo, D. Q. et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-Vacancy defect engineering and involved intermediates using in-situ DRIFTS. Appl. Catal. B:Environ. 2020, 264, 118464.

Nano Research
Pages 7071-7080
Cite this article:
Li A, Zhang Q, Zhao S, et al. A dual plasmonic core–shell Pt/[TiN@TiO2] catalyst for enhanced photothermal synergistic catalytic activity of VOCs abatement. Nano Research, 2022, 15(8): 7071-7080. https://doi.org/10.1007/s12274-022-4380-9
Topics:

723

Views

23

Crossref

22

Web of Science

23

Scopus

1

CSCD

Altmetrics

Received: 28 February 2022
Revised: 31 March 2022
Accepted: 31 March 2022
Published: 10 May 2022
© Tsinghua University Press 2022
Return