AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-density/efficient surface active sites on modified separators to boost Li-S batteries via atomic Co3+-Se termination

Shujie Liu1,2,§Xiaofei Liu1,§Manfang Chen3Dong Wang4( )Xin Ge1Wei Zhang1Xiyang Wang5Chunhui Wang6Tingting Qin1Haozhe Qin6Liang Qiao2Dan Zhang3Xing Ou6( )Weitao Zheng1( )
Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun 130013, China
Key Laboratory of Materials Design and Quantum Simulation, College of Science, Changchun University, Changchun 130022, China
National Base for International Science & Technology Cooperation, School of Chemistry, Xiangtan University, Xiangtan 411105, China
State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
School of Metallurgy and Environment, Central South University, Changsha 410083, China

§ Shujie Liu and Xiaofei Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Single-crystal CoSe2 can exhibit three types of terminated (011) facet, efficiently obtaining the surface with a high-rich Co3+–Se bond termination, in contrast with lots of surface grain boundaries and dangling bonds in polycrystalline CoSe2. As anticipated, it can provide high-density and high-efficient active sites, enormously suppressing the shuttle effect and improving the reaction kinetics via accelerating the conversion and deposition of polysulfides and Li2S during long-term charge/discharge process.

Abstract

Various and critical electrocatalytic processes are involved during the redox reactions in the Li-S batteries, which extremely depend on the surface structure and chemical state. Recently, single-atom concept unlocks a route to maximize the use of surface-active atoms, however, further increasing the density of active site is still strictly limited by the inherent structure that single-atoms are only highly-dispersed on substrate. Herein, we provide a viewpoint that an elaborate facet design with single-crystalline structure engineering can harvest high-density surface active sites, which can significantly boost the electrocatalyst performance for excellent Li-S batteries. Specifically, the single-crystal CoSe2 (scCS) exhibits three-types of terminated (011) facet, efficiently obtaining the surface with a high-rich Co3+–Se bond termination, in contrast with lots of surface grain boundaries and dangling bonds in polycrystalline CoSe2. Surprisingly, the surface active sites concentration can reach more than 69%. As anticipated, it can provide high-density and high-efficient active sites, enormously suppressing the shuttle effect and improving the reaction kinetics via accelerating the conversion and deposition of polysulfides and Li2S. This surface lattice strategy with element terminated mode is a promising approach for designing electrocatalyst effect-based energy system, not merely for Li-S batteries.

Electronic Supplementary Material

Download File(s)
12274_2022_4381_MOESM1_ESM.pdf (1.5 MB)

References

1

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

2

Wang, D.; Liu, Y. M.; Li, G. W.; Qin, C. C.; Huang, L.; Wu, Y. P. Liquid metal welding to suppress Li dendrite by equalized heat distribution. Adv. Funct. Mater. 2021, 31, 2106740.

3

Xie, C.; Shan, H.; Song, X. X.; Chen, L. P.; Wang, J. J.; Shi, J. W.; Hu, J. H.; Zhang, J. J.; Li, X. F. Flexible S@C-CNTs cathodes with robust mechanical strength via blade-coating for lithium-sulfur batteries. J. Colloid Interface Sci. 2021, 592, 448–454.

4

Chen, K.; Fang, R. P.; Lian, Z.; Zhang, X. Y.; Tang, P.; Li, B.; He, K.; Wang, D. W.; Cheng, H. M.; Sun, Z. H. et al. An in-situ solidification strategy to block polysulfides in lithium-sulfur batteries. Energy Storage Mater. 2021, 37, 224–232.

5

Wang, T.; Zhu, J.; Wei, Z. X.; Yang, H. G.; Ma, Z. L.; Ma, R. F.; Zhou, J.; Yang, Y. H.; Peng, L. L.; Fei, H. L. et al. Bacteria-derived biological carbon building robust Li-S batteries. Nano Lett. 2019, 19, 4384–4390.

6

Li, X. Y.; Feng, S.; Zhao, M.; Zhao, C. X.; Chen, X.; Li, B. Q.; Huang, J. Q.; Zhang, Q. Surface gelation on disulfide electrocatalysts in lithium-sulfur batteries. Angew. Chem. , Int. Ed. 2022, 61, e202114671.

7

Zhang, D.; Luo, Y. X.; Wu, B.; Zeng, P.; Xiang, C.; Zhao, C. K.; Sofer, Z.; Chen, M. F.; Wang, X. Y. A heterogeneous FeP-CoP electrocatalyst for expediting sulfur redox in high-specific-energy lithium-sulfur batteries. Electrochim. Acta 2021, 397, 139275.

8

Zhang, M.; Chen, W.; Xue, L. X.; Jiao, Y.; Lei, T. Y.; Chu, J. W.; Huang, J. W.; Gong, C. H.; Yan, C. Y.; Yan, Y. C. et al. Adsorption-catalysis design in the lithium-sulfur battery. Adv. Energy Mater. 2020, 10, 1903008.

9

Yan, Z. C.; Tian, Q.; Liang, Y. R.; Jing, L. Y.; Hu, Z.; Hua, W. B.; Tayal, A.; Lai, W. H.; Wang, W. L.; Peng, J. et al. Electrochemical release of catalysts in nanoreactors for solid sulfur redox reactions in room-temperature sodium-sulfur batteries. Cell Rep. Phys. Sci. 2021, 2, 100539.

10

Chen, M. F.; Zhao, X. M.; Li, Y. F.; Zeng, P.; Liu, H.; Yu, H.; Wu, M.; Li, Z. H.; Shao, D. S.; Miao, C. Q. et al. Kinetically elevated redox conversion of polysulfides of lithium-sulfur battery using a separator modified with transition metals coordinated G-C3N4 with carbon-conjugated. Chem. Eng. J. 2020, 385, 123905.

11

Qin, C. C.; Wang, D.; Liu, Y. M.; Yang, P. K.; Xie, T.; Huang, L.; Zou, H. Y.; Li, G. W.; Wu, Y. P. Tribo-electrochemistry induced artificial solid electrolyte interface by self-catalysis. Nat. Commun. 2021, 12, 7184.

12

Shen, C.; Cheng, T. L.; Liu, C. Y.; Huang, L.; Cao, M. Y.; Song, G. Q.; Wang, D.; Lu, B. G.; Wang, J. W.; Qin, C. C. et al. Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries. J. Mater. Chem. A 2020, 8, 453–460.

13

Yang, H. Y.; Zhang, L. M.; Wang, H.; Huang, S. Z.; Xu, T. T.; Kong, D. Z.; Zhang, Z. F.; Zang, J. H.; Li, X. J.; Wang, Y. Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode. J. Colloid Interface Sci. 2022, 611, 317–326.

14

Liu, X. F.; Wang, D.; Yang, X. Z.; Zhao, Z. Z.; Yang, H.; Feng, M.; Zhang, W.; Zheng, W. T. Synergistic dual-confinement effect: Merit of hollowly metallic Co9S8 in packaging enhancement of electrochemical performance of Li-S batteries. ACS Appl. Energy Mater. 2019, 2, 1428–1435.

15

Zhang, B.; Luo, C.; Deng, Y. Q.; Huang, Z. J.; Zhou, G. M.; Lv, W.; He, Y. B.; Wan, Y.; Kang, F. Y.; Yang, Q. H. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2000091.

16

Deng, W. J.; Xu, Z. X.; Deng, Z. P.; Wang, X. L. Enhanced polysulfide regulation via honeycomb-like carbon with catalytic MoC for lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 21760–21770.

17

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

18

Liu, J. B.; Hu, C. C.; Gao, W. J.; Li, H. P.; Zhao, Y. Combined enhanced redox kinetics and physiochemical confinement in three-dimensionally ordered macro/mesoporous TiN for highly stable lithium-sulfur batteries. Nanotechnology 2021, 33, 115401.

19

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

20

Wang, J.; Zhang, J.; Cheng, S.; Yang, J.; Xi, Y. L.; Hou, X. G.; Xiao, Q. B.; Lin, H. Z. Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer. Nano Lett. 2021, 21, 3245–3253.

21

Yu, S. L.; Sun, Y. J.; Song, L. X.; Cao, X.; Chen, L.; An, X. T.; Liu, X. H.; Cai, W. L.; Yao, T.; Song, Y. Z. et al. Vanadium atom modulated electrocatalyst for accelerated Li-S chemistry. Nano Energy 2021, 89, 106414.

22

Li, W. B.; Song, Q. Q.; Li, M.; Yuan, Y. F.; Zhang, J. H.; Wang, N.; Yang, Z. H.; Huang, J. F.; Lu, J.; Li, X. F. Chemical heterointerface engineering on hybrid electrode materials for electrochemical energy storage. Small Methods 2021, 5, 2100444.

23

Li, S. P.; Zhang, W.; Zeng, Z. Q.; Cheng, S. J.; Xie, J. Selenium or tellurium as eutectic accelerators for high-performance lithium/sodium-sulfur batteries. Electrochem. Energy Rev. 2020, 3, 613–642.

24

Wu, F.; Liu, M. Q.; Li, Y.; Feng, X.; Zhang, K.; Bai, Y.; Wang, X. R.; Wu, C. High-mass-loading electrodes for advanced secondary batteries and supercapacitors. Electrochem. Energy Rev. 2021, 4, 382–446.

25

Xia, C.; Qiu, Y. R.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z. Y.; Kim, J. Y.; Cullen, D. A.; Zheng, D. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 2021, 13, 887–894.

26

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

27

Strobel, P.; Riedel, M.; Ristein, J.; Ley, L. Surface transfer doping of diamond. Nature 2004, 430, 439–441.

28

Lin, C.; Li, J. L.; Li, X. P.; Yang, S.; Luo, W.; Zhang, Y. J.; Kim, S. H.; Kim, D. H.; Shinde, S. S.; Li, Y. F. et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 1012–1023.

29

Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations, and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744.

30

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

31

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 77, 3865–3868.

32

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

33

Wang, C. H.; Qin, H. Z.; Cao, L.; Wang, D.; Zhang, J. F.; Zhang, B.; Ou, X. Engineered single-crystal metal-selenide for rapid K-ion diffusion and polyselenide convention. Chem. Eng. J. 2022, 427, 131963.

34

Hao, J. W.; Xu, X. K.; You, H. R.; Min, H. H.; Liu, X. M.; Yang, H. The free-standing cathode fabricated with nano-CoSe2 embedded in mesoporous carbon nanosheets towards high performance Li/SeS2 batteries. Chem. Eng. J. 2021, 418, 129475.

35

Chen, L. Q.; Xu, Y. H.; Cao, G. Q.; Sari, H. M. K.; Duan, R. H.; Wang, J. Q.; Xie, C.; Li, W. B.; Li, X. Bifunctional catalytic effect of CoSe2 for lithium-sulfur batteries: Single doping versus dual doping. Adv. Funct. Mater. 2021, 32, 2107838.

36

Ji, S. B.; Xia, J. H.; Xu, H. P. Dynamic chemistry of selenium: Se–N and Se–Se dynamic covalent bonds in polymeric systems. ACS Macro Lett. 2016, 5, 78–82.

37

Zhang, Z. S.; Li, J. W.; Yi, T.; Sun, L. W.; Zhang, Y. B.; Hu, X. F.; Cui, W. H.; Yang, X. G. Surface density of synthetically tuned spinel oxides of Co3+ and Ni3+ with enhanced catalytic activity for methane oxidation. Chin. J. Catal. 2018, 39, 1228–1239.

38

Liu, H. X.; Liu, X. J.; Mao, Z. Y.; Zhao, Z.; Peng, X. Y.; Luo, J.; Sun, X. M. Plasma-activated Co3(PO4)2 nanosheet arrays with Co3+-rich surfaces for overall water splitting. J. Power Sources 2018, 400, 190–197.

39

Li, S. W.; Peng, S. J.; Huang, L. S.; Cui, X. Q.; Al-Enizi, A. M.; Zheng, G. F. Carbon-coated Co3+-rich cobalt selenide derived from ZIF-67 for efficient electrochemical water oxidation. ACS Appl. Mater. Interfaces 2016, 8, 20534–20539.

40

Qin, T. T.; Zhang, X. Y.; Wang, D.; Deng, T.; Wang, H. X.; Liu, X. F.; Shi, X. Y.; Li, Z. M.; Chen, H.; Meng, X. M. et al. Oxygen vacancies boost δ-Bi2O3 as a high-performance electrode for rechargeable aqueous batteries. ACS Appl. Mater. Interfaces 2019, 11, 2103–2111.

41

Qin, T. T.; Zhang, W. L.; Ma, Y.; Zhang, W.; Dong, T. W.; Chu, X. Y.; Li, T.; Wang, Z. Z.; Yue, N. L.; Liu, H. Y. et al. Mechanistic insights into the electrochemical Li/Na/K-ion storage for aqueous bismuth anode. Energy Storage Mater. 2022, 45, 33–39.

42

Luo, M.; Garces, N. Y.; Giles, N. C.; Roy, U. N.; Cui, Y. L.; Burger, A. Optical and electron paramagnetic resonance spectroscopies of diffusion-doped Co2+: ZnSe. J. Appl. Phys. 2006, 99, 073709.

43

Zhang, W.; Wang, D.; Zheng, W. T. A semiconductor-electrochemistry model for design of high-rate Li ion battery. J. Energy Chem. 2020, 41, 100–106.

44

Rodin, N. L. A.; Sahar, M. R.; Mohd Noor, F. Magnetic analysis of cobalt oxide nanoparticles comprised boro-tellurite glass with erbium lanthanide. J. Magn. Magn. Mater. 2020, 496, 165931.

45

Ou, X.; Xiao, Z. M.; Zhang, J. F.; Wang, C. H.; Wang, D.; Zhang, B.; Wu, Y. P. Enhancing the rapid Na+-storage performance via electron/ion bridges through GeS2/graphene heterojunction. ACS Nano 2020, 14, 13952–13963.

46

Wang, C. H.; Zhang, B.; Xia, H. F.; Cao, L.; Luo, B.; Fan, X. M.; Zhang, J. F.; Ou, X. Composition and architecture design of double-shelled Co0.85Se1−xSx@carbon/graphene hollow polyhedron with superior alkali (Li, Na, K)-ion storage. Small 2020, 16, 1905853.

47
Cheng, Y. ; Sun, Y. ; Chu, C. T. ; Chang, L. M. ; Wang, Z. M. ; Zhang, D. Y. ; Liu, W. Q. ; Zhuang, Z. C. ; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, in press, https://doi.org/10.1007/s12274-021-4035-2.
48

Wang, X. Y.; Pan, Z. Y.; Chu, X. F.; Huang, K. K.; Cong, Y. G.; Cao, R.; Sarangi, R.; Li, L. P.; Li, G. S.; Feng, S. H. Atomic-scale insights into surface lattice oxygen activation at the spinel/perovskite interface of Co3O4/La0.3Sr0.7CoO3. Angew. Chem. , Int. Ed. 2019, 58, 11720–11725.

49

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

50

Zhang, X. L.; Su, X. Z.; Zheng, Y. R.; Hu, S. J.; Shi, L.; Gao, F. Y.; Yang, P. P.; Niu, Z. Z.; Wu, Z. Z.; Qin, S. et al. Strongly coupled cobalt diselenide monolayers for selective electrocatalytic oxygen reduction to H2O2 under acidic conditions. Angew. Chem. , Int. Ed. 2021, 60, 26922–26931.

51
Dong, T. W. ; Yi, W. C. ; Deng, T. ; Qin, T. T. ; Chu, X. Y. ; Yang, H. ; Zheng, L. R. ; Jo Yoo, S. ; Kim, J. ; Wang, Z. Z. et al. Diffusionless-like transformation unlocks pseudocapacitance with bulk utilization: Reinventing Fe2O3 in alkaline electrolyte. Energy Environ. Mater. 2022, in press, https://doi.org/10.1002/EEM2.12262.
52

Verbeeck, J.; Lebedev, O. I.; Van Tendeloo, G.; Cagnon, L.; Bougerol, C.; Tourillon, G. Fe and Co nanowires and nanotubes synthesized by template electrodeposition. J. Electrochem. Soc. 2003, 150, E468.

53

Yuan, D.; Dou, Y. H.; Tian, Y. H.; Adekoya, D.; Xu, L.; Zhang, S. Q. Robust pseudocapacitive sodium cation intercalation induced by cobalt vacancies at atomically thin Co1−xSe2/graphene heterostructure for sodium-ion batteries. Angew. Chem. , Int. Ed. 2021, 60, 18830–18837.

54

Zhang, Z. B.; Zhou, X. F.; Liu, Z. P. Conformal coating of a carbon film on 3D hosts toward stable lithium anodes. ACS Appl. Energy Mater. 2021, 4, 7288–7297.

55

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

56

Wang, M. X.; Fan, L. S.; Sun, X.; Guan, B.; Jiang, B.; Wu, X.; Tian, D.; Sun, K. N.; Qiu, Y.; Yin, X. J. et al. Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li-S battery. ACS Energy Lett. 2020, 5, 3041–3050.

57

Yuan, B.; Hua, D.; Gu, X. X.; Shen, Y.; Xu, L. C.; Li, X. Y.; Zheng, B.; Wu, J. S.; Zhang, W. N.; Li, S. et al. Polar, catalytic, and conductive CoSe2/C frameworks for performance enhanced S cathode in Li-S batteries. J. Energy Chem. 2020, 48, 128–135.

58

Guo, B. S.; Ma, Q. R.; Zhang, L. C.; Yang, T. T.; Liu, D. Y.; Zhang, X.; Qi, Y. R.; Bao, S. J.; Xu, M. W. Yolk–shell porous carbon spheres@CoSe2 nanosheets as multilayer defenses system of polysulfide for advanced Li-S batteries. Chem. Eng. J. 2021, 413, 127521.

59

Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

60

Chen, Y.; Kang, Q.; Jiang, P. K.; Huang, X. Y. Rapid, High-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Res. 2021, 14, 2424–2431.

61

Dibden, J. W.; Meddings, N.; Owen, J. R.; Garcia-Araez, N. Quantitative galvanostatic intermittent titration technique for the analysis of a model system with applications in lithium-sulfur batteries. ChemElectroChem 2018, 5, 445–454.

62

Zhao, Y. F.; Zhang, J.; Guo, J. C. Cathode-electrolyte interfacial processes in lithium∥sulfur batteries under lean electrolyte conditions. ACS Appl. Mater. Interfaces 2021, 13, 31749–31755.

63

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

64

Ma, L. B.; Lv, Y. H.; Wu, J. X.; Xia, C.; Kang, Q.; Zhang, Y. Z.; Liang, H. F.; Jin, Z. Recent advances in anode materials for potassium-ion batteries: A review. Nano Res. 2021, 14, 4442–4470.

Nano Research
Pages 7199-7208
Cite this article:
Liu S, Liu X, Chen M, et al. High-density/efficient surface active sites on modified separators to boost Li-S batteries via atomic Co3+-Se termination. Nano Research, 2022, 15(8): 7199-7208. https://doi.org/10.1007/s12274-022-4381-8
Topics:

1264

Views

25

Crossref

24

Web of Science

24

Scopus

0

CSCD

Altmetrics

Received: 04 March 2022
Revised: 31 March 2022
Accepted: 31 March 2022
Published: 31 May 2022
© Tsinghua University Press 2022
Return