AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Utilization of cationic microporous metal-organic framework for efficient Xe/Kr separation

Lingshan Gong1,§Ying Liu2,§Junyu Ren1Abdullah M. Al-Enizi3Ayman Nafady3Yingxiang Ye1( )Zongbi Bao2( )Shengqian Ma1( )
Department of Chemistry, University of North Texas, Denton, Texas 76201, USA
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

§ Lingshan Gong and Ying Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Xenon/krypton mixtures can be efficiently separated by cationic microporous metal-organic framework with uniform three-dimensional interconnection channels.

Abstract

The separation of xenon/krypton (Xe/Kr) mixtures plays a vital role in the industrial process of manufacturing high-purity xenon. Compared with energy-intensive cryogenic distillation, porous materials based on physical adsorption are very promising in the low-cost and energy-saving separation processes. Herein, we show that a cationic metal-organic framework (named as FJU-55) exhibits highly efficient Xe/Kr separation performance, which can be attributable to its uniform three-dimensional (3D) interconnection channels and the electro-positive features as the host framework. Moreover, FJU-55 demonstrates good Xe adsorption capacity of 1.41 mmol/g and excellent Xe/Kr selectivity of 10 (298 K and 100 kPa), together with a high Qst value of 39.4 kJ/mol at low coverage area. The superior Xe/Kr separation performance of FJU-55 was further confirmed by the dynamic breakthrough experiments. Results obtained via molecular modeling studies have revealed that the suitable pore size and abundant accessible aromatic ligands in FJU-55 could offer strong multiple C–H∙∙∙Xe interactions, which play a collaborative role in this challenging gas separation task.

Electronic Supplementary Material

Download File(s)
12274_2022_4383_MOESM1_ESM.pdf (3 MB)

References

1

Lane, G. A.; Nahrwold, M. L.; Tait, A. R.; Taylor-Busch, M.; Cohen, P. J.; Beaudoin, A. R. Anesthetics as teratogens: Nitrous oxide is fetotoxic, xenon is not. Science 1980, 210, 899–901.

2

Banerjee, D.; Cairns, A. J.; Liu, J.; Motkuri, R. K.; Nune, S. K.; Fernandez, C. A.; Krishna, R.; Strachan, D. M.; Thallapally, P. K. Potential of metal-organic frameworks for separation of xenon and krypton. Acc. Chem. Res. 2015, 48, 211–219.

3

Banerjee, D.; Simon, C. M.; Elsaidi, S. K.; Haranczyk, M.; Thallapally, P. K. Xenon gas separation and storage using metal-organic frameworks. Chem 2018, 4, 466–494.

4
Kerry, F. G. Industrial Gas Handbook: Gas Separation and Purification; CRC Press: Boca Raton, 2007.
5

Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.

6

Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

7

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

8

Ye, Y. X.; Xian, S. K.; Cui, H.; Tan, K.; Gong, L. S.; Liang, B.; Pham, T.; Pandey, H.; Krishna, R.; Lan, P. C. et al. Metal-organic framework based hydrogen-bonding nanotrap for efficient acetylene storage and separation. J. Am. Chem. Soc. 2022, 144, 1681–1689.

9

Bazan, R. E.; Bastos-Neto, M.; Moeller, A.; Dreisbach, F.; Staudt, R. Adsorption equilibria of O2, Ar, Kr and Xe on activated carbon and zeolites: Single component and mixture data. Adsorption 2011, 17, 371–383.

10

Munakata, K.; Fukumatsu, T.; Yamatsuki, S.; Tanaka, K.; Nishikawa, M. Adsorption equilibria of krypton, xenon, nitrogen and their mixtures on molecular sieve 5A and activated charcoal. J. Nucl. Sci. Technol. 1999, 36, 818–829.

11

Chen, Z. J.; Li, P. H.; Anderson, R.; Wang, X. J.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, T.; Gómez-Gualdrón, D. A. et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 2020, 368, 297–303.

12

Lin, R. B.; Zhang, Z. J.; Chen, B. L. Achieving high performance metal-organic framework materials through pore engineering. Acc. Chem. Res. 2021, 54, 3362–3376.

13

Cui, H.; Ye, Y. X.; Liu, T.; Alothman, Z. A.; Alduhaish, O.; Lin, R. B.; Chen, B. L. Isoreticular microporous metal-organic frameworks for carbon dioxide capture. Inorg. Chem. 2020, 59, 17143–17148.

14

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

15

Jiao, L.; Wang, J. X.; Jiang, H. L. Microenvironment modulation in metal-organic framework-based catalysis. Acc. Mater. Res. 2021, 2, 327–339.

16

Ye, Y. X.; Gong, L. S.; Xiang, S. C.; Zhang, Z. J.; Chen, B. L. Metal-organic frameworks as a versatile platform for proton conductors. Adv. Mater. 2020, 32, 1907090.

17

Li, H. Y.; Zhao, S. N.; Zang, S. Q.; Li, J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401.

18

Lin, R. B.; Xiang, S. C.; Zhou, W.; Chen, B. L. Microporous metal-organic framework materials for gas separation. Chem 2020, 6, 337–363.

19

Ye, Y. X.; Ma, Z. L.; Chen, L. J.; Lin, H. Z.; Lin, Q. J.; Liu, L. Z.; Li, Z. Y.; Chen, S. M.; Zhang, Z. J.; Xiang, S. C. Microporous metal-organic frameworks with open metal sites and π-Lewis acidic pore surfaces for recovering ethylene from polyethylene off-gas. J. Mater. Chem. A 2018, 6, 20822–20828.

20

Ye, Y. X.; Ma, Z. L.; Lin, R. B.; Krishna, R.; Zhou, W.; Lin, Q. J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Pore space partition within a metal-organic framework for highly efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2019, 141, 4130–4136.

21

Ye, Y. X.; Guo, W. G.; Wang, L. H.; Li, Z. Y.; Song, Z. J.; Chen, J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Straightforward loading of imidazole molecules into metal-organic framework for high proton conduction. J. Am. Chem. Soc. 2017, 139, 15604–15607.

22

Wang, Q. J.; Ke, T.; Yang, L. F.; Zhang, Z. Q.; Cui, X. L.; Bao, Z. B.; Ren, Q. L.; Yang, Q. W.; Xing, H. B. Separation of Xe from Kr with record selectivity and productivity in anion-pillared ultramicroporous materials by inverse size-sieving. Angew. Chem., Int. Ed. 2020, 59, 3423–3428.

23
Zheng F. Guo L. D. Chen R. D. Chen L. H. Zhang Z. G. Yang Q. W. Yang Y. W. Su B. G. Ren Q. L. Bao Z. B. Shell-like xenon nano-traps within angular anion-pillared layered porous materials for boosting Xe/Kr separation Angew. Chem., Int. Ed. 2022 61 e202116686 10.1002/anie.202116686

Zheng, F.; Guo, L. D.; Chen, R. D.; Chen, L. H.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Su, B. G.; Ren, Q. L.; Bao, Z. B. Shell-like xenon nano-traps within angular anion-pillared layered porous materials for boosting Xe/Kr separation. Angew. Chem., Int. Ed. 2022, 61, e202116686.

24

Chen, L. J.; Reiss, P. S.; Chong, S. Y.; Holden, D.; Jelfs, K. E.; Hasell, T.; Little, M. A.; Kewley, A.; Briggs, M. E.; Stephenson, A. et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater. 2014, 13, 954–960.

25

Ryan, P.; Farha, O. K.; Broadbelt, L. J.; Snurr, R. Q. Computational screening of metal-organic frameworks for xenon/krypton separation. AIChE J. 2011, 57, 1759–1766.

26

Sikora, B. J.; Wilmer, C. E.; Greenfield, M. L.; Snurr, R. Q. Thermodynamic analysis of Xe/Kr selectivity in over 137,000 hypothetical metal-organic frameworks. Chem. Sci. 2012, 3, 2217–2223.

27

Banerjee, D.; Simon, C. M.; Plonka, A. M.; Motkuri, R. K.; Liu, J.; Chen, X. Y.; Smit, B.; Parise, J. B.; Haranczyk, M.; Thallapally, P. K. Metal-organic framework with optimally selective xenon adsorption and separation. Nat. Commun. 2016, 7, 11831.

28

Thallapally, P. K.; Grate, J. W.; Motkuri, R. K. Facile xenon capture and release at room temperature using a metal-organic framework: A comparison with activated charcoal. Chem. Commun. 2012, 48, 347–349.

29

Liu, J.; Strachan, D. M.; Thallapally, P. K. Enhanced noble gas adsorption in Ag@MOF-74Ni. Chem. Commun. 2014, 50, 466–468.

30

Perry, J. J.; Teich-McGoldrick, S. L.; Meek, S. T.; Greathouse, J. A.; Haranczyk, M.; Allendorf, M. D. Noble gas adsorption in metal-organic frameworks containing open metal sites. J. Phys. Chem. C 2014, 118, 11685–11698.

31

Wang, H. Z.; Shi, Z. L.; Yang, J. J.; Sun, T.; Rungtaweevoranit, B.; Lyu, H.; Zhang, Y. B.; Yaghi, O. M. Docking of CuI and AgI in metal-organic frameworks for adsorption and separation of xenon. Angew. Chem., Int. Ed. 2021, 60, 3417–3421.

32

Wang, Y. L.; Liu, W.; Bai, Z. L.; Zheng, T.; Silver, M. A.; Li, Y. X.; Wang, Y. X.; Wang, X.; Diwu, J.; Chai, Z. F. et al. Employing an unsaturated Th4+ site in a porous thorium-organic framework for Kr/Xe uptake and separation. Angew. Chem., Int. Ed. 2018, 57, 5783–5787.

33

Pei, J. Y.; Gu, X. W.; Liang, C. C.; Chen, B. L.; Li, B.; Qian, G. D. Robust and radiation-resistant hofmann-type metal-organic frameworks for record xenon/krypton separation. J. Am. Chem. Soc. 2022, 144, 3200–3209.

34

Niu, Z.; Fan, Z. W.; Pham, T.; Verma, G.; Forrest, K. A.; Space, B.; Thallapally, P. K.; Al-Enizi, A. M.; Ma, S. Q. Self-adjusting metal-organic framework for efficient capture of trace xenon and krypton. Angew. Chem., Int. Ed. 2022, 61, e202117807.

35

Liu, B. Y.; Gong, Y. J.; Wu, X. N.; Liu, Q.; Li, W.; Xiong, S. S.; Hu, S.; Wang, X. L. Enhanced xenon adsorption and separation with an anionic indium-organic framework by ion exchange with Co2+. RSC Adv. 2017, 7, 55012–55019.

36

Liu, Y.; Dai, J. J.; Guo, L. D.; Zhang, Z. G.; Yang, Y. W.; Yang, Q. W.; Ren, Q. L.; Bao, Z. B. Porous hydrogen-bonded frameworks assembled from metal-nucleobase entities for Xe/Kr separation. CCS Chem. 2022, 4, 381–388.

37

Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586.

38

Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7–13.

39

Ravikovitch, P. I.; Vishnyakov, A.; Russo, R.; Neimark, A. V. Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 2000, 16, 2311–2320.

40

Soleimani Dorcheh, A.; Denysenko, D.; Volkmer, D.; Donner, W.; Hirscher, M. Noble gases and microporous frameworks; from interaction to application. Microporous Mesoporous Mater. 2012, 162, 64–68.

41

Mohamed, M. H.; Elsaidi, S. K.; Pham, T.; Forrest, K. A.; Schaef, H. T.; Hogan, A.; Wojtas, L.; Xu, W. Q.; Space, B.; Zaworotko, M. J. et al. Hybrid ultra-microporous materials for selective xenon adsorption and separation. Angew. Chem., Int. Ed. 2016, 55, 8285–8289.

42

Li, L. Y.; Guo, L. D.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Bao, Z. B.; Ren, Q. L.; Li, J. A robust squarate-based metal-organic framework demonstrates record-high affinity and selectivity for xenon over krypton. J. Am. Chem. Soc. 2019, 141, 9358–9364.

43

Xiong, J. B.; Li, A. L.; Fan, Y. L.; Xu, Z. Z.; Feng, H.; Gao, Q.; Fan, Q. W.; He, Y.; Gao, Z.; Luo, F. Creating uniform pores for xenon/krypton and acetylene/ethylene separation on a strontium-based metal-organic framework. J. Solid State Chem. 2020, 288, 121337.

44

Fernandez, C. A.; Liu, J.; Thallapally, P. K.; Strachan, D. M. Switching Kr/Xe selectivity with temperature in a metal-organic framework. J. Am. Chem. Soc. 2012, 134, 9046–9049.

45

Xiong, S. S.; Gong, Y. J.; Hu, S. L.; Wu, X. N.; Li, W.; He, Y. B.; Chen, B. L.; Wang, X. L. A microporous metal-organic framework with commensurate adsorption and highly selective separation of xenon. J. Mater. Chem. A 2018, 6, 4752–4758.

46

Chen, X. Y.; Plonka, A. M.; Banerjee, D.; Krishna, R.; Schaef, H. T.; Ghose, S.; Thallapally, P. K.; Parise, J. B. Direct observation of Xe and Kr adsorption in a Xe-selective microporous metal-organic framework. J. Am. Chem. Soc. 2015, 137, 7007–7010.

47

Yu, G. L.; Liu, Y. Q.; Zou, X. Q.; Zhao, N.; Rong, H. Z.; Zhu, G. S. A nanosized metal-organic framework with small pores for kinetic xenon separation. J. Mater. Chem. A 2018, 6, 11797–11803.

48

Yan, Z. T.; Gong, Y. J.; Yang, C. T.; Wu, X. N.; Liu, B. Y.; Liu, Q.; Xiong, S. S.; Peng, S. M. Pore size reduction by methyl function in aluminum-based metal-organic frameworks for xenon/krypton separation. Cryst. Growth Des. 2020, 20, 8039–8046.

49

Zhang, P. X.; Zhong, Y.; Yao, Q.; Liu, X.; Zhang, Y.; Wang, J.; Deng, Q.; Zeng, Z. L.; Deng, S. G. Robust ultramicroporous metal-organic framework with rich hydroxyl-decorated channel walls for highly selective noble gas separation. J. Chem. Eng. Data 2020, 65, 4018–4023.

50

Yu, L.; Xiong, S. S.; Lin, Y. H.; Li, L. Y.; Peng, J. J.; Liu, W.; Huang, X. X.; Wang, H.; Li, J. Tuning the channel size and structure flexibility of metal-organic frameworks for the selective adsorption of noble gases. Inorg. Chem. 2019, 58, 15025–15028.

51

Kapelewski, M. T.; Oktawiec, J.; Runčevski, T.; Gonzalez, M. I.; Long, J. R. Separation of xenon and krypton in the metal-organic frameworks M2(m-dobdc) (M = Co, Ni). Isr. J. Chem. 2018, 58, 1138–1143.

52

Yan, Z. T.; Gong, Y. J.; Chen, B. H.; Wu, X. N.; Liu, Q.; Cui, L. L.; Xiong, S. S.; Peng, S. M. Methyl functionalized Zr-Fum MOF with enhanced xenon adsorption and separation. Sep. Purif. Technol. 2020, 239, 116514.

53

Tao, Y.; Fan, Y. L.; Xu, Z. Z.; Feng, X. F.; Krishna, R.; Luo, F. Boosting selective adsorption of Xe over Kr by double-accessible open-metal site in metal-organic framework: Experimental and theoretical research. Inorg. Chem. 2020, 59, 11793–11800.

54

Luo, S. H.; Ma, F. Y.; Wang, X.; Yuan, M. J.; Chen, L. H.; Qiu, S. K.; Tang, Q.; Wang, S. Uptake and separation of Xe and Kr by a zeolitic imidazolate framework with a desirable pore window. J. Radioanal. Nucl. Chem. 2020, 324, 1275–1281.

55

Myers, A. L.; Prausnitz, J. M. Thermodynamics of mixed-gas adsorption. AIChE J. 1965, 11, 121–127.

56

Wang, H.; Yao, K. X.; Zhang, Z. J.; Jagiello, J.; Gong, Q. H.; Han, Y.; Li, J. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases. Chem. Sci. 2014, 5, 620–624.

57

Liu, Y.; Wu, H.; Guo, L. D.; Zhou, W.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Ren, Q. L.; Bao, Z. B. Hydrogen-bonded metal-nucleobase frameworks for efficient separation of xenon and krypton. Angew. Chem., Int. Ed. 2022, 61, e202117609.

58

Wang, T.; Peng, Y. L.; Lin, E.; Niu, Z.; Li, P. F.; Ma, S. Q.; Zhao, P.; Chen, Y.; Cheng, P.; Zhang, Z. J. Robust bimetallic ultramicroporous metal-organic framework for separation and purification of noble gases. Inorg. Chem. 2020, 59, 4868–4873.

59

Idrees, K. B.; Chen, Z. J.; Zhang, X.; Mian, M. R.; Drout, R. J.; Islamoglu, T.; Farha, O. K. Tailoring pore aperture and structural defects in zirconium-based metal-organic frameworks for krypton/xenon separation. Chem. Mater. 2020, 32, 3776–3782.

Nano Research
Pages 7559-7564
Cite this article:
Gong L, Liu Y, Ren J, et al. Utilization of cationic microporous metal-organic framework for efficient Xe/Kr separation. Nano Research, 2022, 15(8): 7559-7564. https://doi.org/10.1007/s12274-022-4383-6
Topics:

978

Views

33

Crossref

35

Web of Science

35

Scopus

1

CSCD

Altmetrics

Received: 20 January 2022
Revised: 15 March 2022
Accepted: 31 March 2022
Published: 03 June 2022
© Tsinghua University Press 2022
Return