Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The separation of xenon/krypton (Xe/Kr) mixtures plays a vital role in the industrial process of manufacturing high-purity xenon. Compared with energy-intensive cryogenic distillation, porous materials based on physical adsorption are very promising in the low-cost and energy-saving separation processes. Herein, we show that a cationic metal-organic framework (named as FJU-55) exhibits highly efficient Xe/Kr separation performance, which can be attributable to its uniform three-dimensional (3D) interconnection channels and the electro-positive features as the host framework. Moreover, FJU-55 demonstrates good Xe adsorption capacity of 1.41 mmol/g and excellent Xe/Kr selectivity of 10 (298 K and 100 kPa), together with a high Qst value of 39.4 kJ/mol at low coverage area. The superior Xe/Kr separation performance of FJU-55 was further confirmed by the dynamic breakthrough experiments. Results obtained via molecular modeling studies have revealed that the suitable pore size and abundant accessible aromatic ligands in FJU-55 could offer strong multiple C–H∙∙∙Xe interactions, which play a collaborative role in this challenging gas separation task.
Lane, G. A.; Nahrwold, M. L.; Tait, A. R.; Taylor-Busch, M.; Cohen, P. J.; Beaudoin, A. R. Anesthetics as teratogens: Nitrous oxide is fetotoxic, xenon is not. Science 1980, 210, 899–901.
Banerjee, D.; Cairns, A. J.; Liu, J.; Motkuri, R. K.; Nune, S. K.; Fernandez, C. A.; Krishna, R.; Strachan, D. M.; Thallapally, P. K. Potential of metal-organic frameworks for separation of xenon and krypton. Acc. Chem. Res. 2015, 48, 211–219.
Banerjee, D.; Simon, C. M.; Elsaidi, S. K.; Haranczyk, M.; Thallapally, P. K. Xenon gas separation and storage using metal-organic frameworks. Chem 2018, 4, 466–494.
Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.
Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.
Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.
Ye, Y. X.; Xian, S. K.; Cui, H.; Tan, K.; Gong, L. S.; Liang, B.; Pham, T.; Pandey, H.; Krishna, R.; Lan, P. C. et al. Metal-organic framework based hydrogen-bonding nanotrap for efficient acetylene storage and separation. J. Am. Chem. Soc. 2022, 144, 1681–1689.
Bazan, R. E.; Bastos-Neto, M.; Moeller, A.; Dreisbach, F.; Staudt, R. Adsorption equilibria of O2, Ar, Kr and Xe on activated carbon and zeolites: Single component and mixture data. Adsorption 2011, 17, 371–383.
Munakata, K.; Fukumatsu, T.; Yamatsuki, S.; Tanaka, K.; Nishikawa, M. Adsorption equilibria of krypton, xenon, nitrogen and their mixtures on molecular sieve 5A and activated charcoal. J. Nucl. Sci. Technol. 1999, 36, 818–829.
Chen, Z. J.; Li, P. H.; Anderson, R.; Wang, X. J.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, T.; Gómez-Gualdrón, D. A. et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 2020, 368, 297–303.
Lin, R. B.; Zhang, Z. J.; Chen, B. L. Achieving high performance metal-organic framework materials through pore engineering. Acc. Chem. Res. 2021, 54, 3362–3376.
Cui, H.; Ye, Y. X.; Liu, T.; Alothman, Z. A.; Alduhaish, O.; Lin, R. B.; Chen, B. L. Isoreticular microporous metal-organic frameworks for carbon dioxide capture. Inorg. Chem. 2020, 59, 17143–17148.
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
Jiao, L.; Wang, J. X.; Jiang, H. L. Microenvironment modulation in metal-organic framework-based catalysis. Acc. Mater. Res. 2021, 2, 327–339.
Ye, Y. X.; Gong, L. S.; Xiang, S. C.; Zhang, Z. J.; Chen, B. L. Metal-organic frameworks as a versatile platform for proton conductors. Adv. Mater. 2020, 32, 1907090.
Li, H. Y.; Zhao, S. N.; Zang, S. Q.; Li, J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401.
Lin, R. B.; Xiang, S. C.; Zhou, W.; Chen, B. L. Microporous metal-organic framework materials for gas separation. Chem 2020, 6, 337–363.
Ye, Y. X.; Ma, Z. L.; Chen, L. J.; Lin, H. Z.; Lin, Q. J.; Liu, L. Z.; Li, Z. Y.; Chen, S. M.; Zhang, Z. J.; Xiang, S. C. Microporous metal-organic frameworks with open metal sites and π-Lewis acidic pore surfaces for recovering ethylene from polyethylene off-gas. J. Mater. Chem. A 2018, 6, 20822–20828.
Ye, Y. X.; Ma, Z. L.; Lin, R. B.; Krishna, R.; Zhou, W.; Lin, Q. J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Pore space partition within a metal-organic framework for highly efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2019, 141, 4130–4136.
Ye, Y. X.; Guo, W. G.; Wang, L. H.; Li, Z. Y.; Song, Z. J.; Chen, J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Straightforward loading of imidazole molecules into metal-organic framework for high proton conduction. J. Am. Chem. Soc. 2017, 139, 15604–15607.
Wang, Q. J.; Ke, T.; Yang, L. F.; Zhang, Z. Q.; Cui, X. L.; Bao, Z. B.; Ren, Q. L.; Yang, Q. W.; Xing, H. B. Separation of Xe from Kr with record selectivity and productivity in anion-pillared ultramicroporous materials by inverse size-sieving. Angew. Chem., Int. Ed. 2020, 59, 3423–3428.
Zheng, F.; Guo, L. D.; Chen, R. D.; Chen, L. H.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Su, B. G.; Ren, Q. L.; Bao, Z. B. Shell-like xenon nano-traps within angular anion-pillared layered porous materials for boosting Xe/Kr separation.
Chen, L. J.; Reiss, P. S.; Chong, S. Y.; Holden, D.; Jelfs, K. E.; Hasell, T.; Little, M. A.; Kewley, A.; Briggs, M. E.; Stephenson, A. et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater. 2014, 13, 954–960.
Ryan, P.; Farha, O. K.; Broadbelt, L. J.; Snurr, R. Q. Computational screening of metal-organic frameworks for xenon/krypton separation. AIChE J. 2011, 57, 1759–1766.
Sikora, B. J.; Wilmer, C. E.; Greenfield, M. L.; Snurr, R. Q. Thermodynamic analysis of Xe/Kr selectivity in over 137,000 hypothetical metal-organic frameworks. Chem. Sci. 2012, 3, 2217–2223.
Banerjee, D.; Simon, C. M.; Plonka, A. M.; Motkuri, R. K.; Liu, J.; Chen, X. Y.; Smit, B.; Parise, J. B.; Haranczyk, M.; Thallapally, P. K. Metal-organic framework with optimally selective xenon adsorption and separation. Nat. Commun. 2016, 7, 11831.
Thallapally, P. K.; Grate, J. W.; Motkuri, R. K. Facile xenon capture and release at room temperature using a metal-organic framework: A comparison with activated charcoal. Chem. Commun. 2012, 48, 347–349.
Liu, J.; Strachan, D. M.; Thallapally, P. K. Enhanced noble gas adsorption in Ag@MOF-74Ni. Chem. Commun. 2014, 50, 466–468.
Perry, J. J.; Teich-McGoldrick, S. L.; Meek, S. T.; Greathouse, J. A.; Haranczyk, M.; Allendorf, M. D. Noble gas adsorption in metal-organic frameworks containing open metal sites. J. Phys. Chem. C 2014, 118, 11685–11698.
Wang, H. Z.; Shi, Z. L.; Yang, J. J.; Sun, T.; Rungtaweevoranit, B.; Lyu, H.; Zhang, Y. B.; Yaghi, O. M. Docking of CuI and AgI in metal-organic frameworks for adsorption and separation of xenon. Angew. Chem., Int. Ed. 2021, 60, 3417–3421.
Wang, Y. L.; Liu, W.; Bai, Z. L.; Zheng, T.; Silver, M. A.; Li, Y. X.; Wang, Y. X.; Wang, X.; Diwu, J.; Chai, Z. F. et al. Employing an unsaturated Th4+ site in a porous thorium-organic framework for Kr/Xe uptake and separation. Angew. Chem., Int. Ed. 2018, 57, 5783–5787.
Pei, J. Y.; Gu, X. W.; Liang, C. C.; Chen, B. L.; Li, B.; Qian, G. D. Robust and radiation-resistant hofmann-type metal-organic frameworks for record xenon/krypton separation. J. Am. Chem. Soc. 2022, 144, 3200–3209.
Niu, Z.; Fan, Z. W.; Pham, T.; Verma, G.; Forrest, K. A.; Space, B.; Thallapally, P. K.; Al-Enizi, A. M.; Ma, S. Q. Self-adjusting metal-organic framework for efficient capture of trace xenon and krypton. Angew. Chem., Int. Ed. 2022, 61, e202117807.
Liu, B. Y.; Gong, Y. J.; Wu, X. N.; Liu, Q.; Li, W.; Xiong, S. S.; Hu, S.; Wang, X. L. Enhanced xenon adsorption and separation with an anionic indium-organic framework by ion exchange with Co2+. RSC Adv. 2017, 7, 55012–55019.
Liu, Y.; Dai, J. J.; Guo, L. D.; Zhang, Z. G.; Yang, Y. W.; Yang, Q. W.; Ren, Q. L.; Bao, Z. B. Porous hydrogen-bonded frameworks assembled from metal-nucleobase entities for Xe/Kr separation. CCS Chem. 2022, 4, 381–388.
Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586.
Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7–13.
Ravikovitch, P. I.; Vishnyakov, A.; Russo, R.; Neimark, A. V. Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 2000, 16, 2311–2320.
Soleimani Dorcheh, A.; Denysenko, D.; Volkmer, D.; Donner, W.; Hirscher, M. Noble gases and microporous frameworks; from interaction to application. Microporous Mesoporous Mater. 2012, 162, 64–68.
Mohamed, M. H.; Elsaidi, S. K.; Pham, T.; Forrest, K. A.; Schaef, H. T.; Hogan, A.; Wojtas, L.; Xu, W. Q.; Space, B.; Zaworotko, M. J. et al. Hybrid ultra-microporous materials for selective xenon adsorption and separation. Angew. Chem., Int. Ed. 2016, 55, 8285–8289.
Li, L. Y.; Guo, L. D.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Bao, Z. B.; Ren, Q. L.; Li, J. A robust squarate-based metal-organic framework demonstrates record-high affinity and selectivity for xenon over krypton. J. Am. Chem. Soc. 2019, 141, 9358–9364.
Xiong, J. B.; Li, A. L.; Fan, Y. L.; Xu, Z. Z.; Feng, H.; Gao, Q.; Fan, Q. W.; He, Y.; Gao, Z.; Luo, F. Creating uniform pores for xenon/krypton and acetylene/ethylene separation on a strontium-based metal-organic framework. J. Solid State Chem. 2020, 288, 121337.
Fernandez, C. A.; Liu, J.; Thallapally, P. K.; Strachan, D. M. Switching Kr/Xe selectivity with temperature in a metal-organic framework. J. Am. Chem. Soc. 2012, 134, 9046–9049.
Xiong, S. S.; Gong, Y. J.; Hu, S. L.; Wu, X. N.; Li, W.; He, Y. B.; Chen, B. L.; Wang, X. L. A microporous metal-organic framework with commensurate adsorption and highly selective separation of xenon. J. Mater. Chem. A 2018, 6, 4752–4758.
Chen, X. Y.; Plonka, A. M.; Banerjee, D.; Krishna, R.; Schaef, H. T.; Ghose, S.; Thallapally, P. K.; Parise, J. B. Direct observation of Xe and Kr adsorption in a Xe-selective microporous metal-organic framework. J. Am. Chem. Soc. 2015, 137, 7007–7010.
Yu, G. L.; Liu, Y. Q.; Zou, X. Q.; Zhao, N.; Rong, H. Z.; Zhu, G. S. A nanosized metal-organic framework with small pores for kinetic xenon separation. J. Mater. Chem. A 2018, 6, 11797–11803.
Yan, Z. T.; Gong, Y. J.; Yang, C. T.; Wu, X. N.; Liu, B. Y.; Liu, Q.; Xiong, S. S.; Peng, S. M. Pore size reduction by methyl function in aluminum-based metal-organic frameworks for xenon/krypton separation. Cryst. Growth Des. 2020, 20, 8039–8046.
Zhang, P. X.; Zhong, Y.; Yao, Q.; Liu, X.; Zhang, Y.; Wang, J.; Deng, Q.; Zeng, Z. L.; Deng, S. G. Robust ultramicroporous metal-organic framework with rich hydroxyl-decorated channel walls for highly selective noble gas separation. J. Chem. Eng. Data 2020, 65, 4018–4023.
Yu, L.; Xiong, S. S.; Lin, Y. H.; Li, L. Y.; Peng, J. J.; Liu, W.; Huang, X. X.; Wang, H.; Li, J. Tuning the channel size and structure flexibility of metal-organic frameworks for the selective adsorption of noble gases. Inorg. Chem. 2019, 58, 15025–15028.
Kapelewski, M. T.; Oktawiec, J.; Runčevski, T.; Gonzalez, M. I.; Long, J. R. Separation of xenon and krypton in the metal-organic frameworks M2(m-dobdc) (M = Co, Ni). Isr. J. Chem. 2018, 58, 1138–1143.
Yan, Z. T.; Gong, Y. J.; Chen, B. H.; Wu, X. N.; Liu, Q.; Cui, L. L.; Xiong, S. S.; Peng, S. M. Methyl functionalized Zr-Fum MOF with enhanced xenon adsorption and separation. Sep. Purif. Technol. 2020, 239, 116514.
Tao, Y.; Fan, Y. L.; Xu, Z. Z.; Feng, X. F.; Krishna, R.; Luo, F. Boosting selective adsorption of Xe over Kr by double-accessible open-metal site in metal-organic framework: Experimental and theoretical research. Inorg. Chem. 2020, 59, 11793–11800.
Luo, S. H.; Ma, F. Y.; Wang, X.; Yuan, M. J.; Chen, L. H.; Qiu, S. K.; Tang, Q.; Wang, S. Uptake and separation of Xe and Kr by a zeolitic imidazolate framework with a desirable pore window. J. Radioanal. Nucl. Chem. 2020, 324, 1275–1281.
Myers, A. L.; Prausnitz, J. M. Thermodynamics of mixed-gas adsorption. AIChE J. 1965, 11, 121–127.
Wang, H.; Yao, K. X.; Zhang, Z. J.; Jagiello, J.; Gong, Q. H.; Han, Y.; Li, J. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases. Chem. Sci. 2014, 5, 620–624.
Liu, Y.; Wu, H.; Guo, L. D.; Zhou, W.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Ren, Q. L.; Bao, Z. B. Hydrogen-bonded metal-nucleobase frameworks for efficient separation of xenon and krypton. Angew. Chem., Int. Ed. 2022, 61, e202117609.
Wang, T.; Peng, Y. L.; Lin, E.; Niu, Z.; Li, P. F.; Ma, S. Q.; Zhao, P.; Chen, Y.; Cheng, P.; Zhang, Z. J. Robust bimetallic ultramicroporous metal-organic framework for separation and purification of noble gases. Inorg. Chem. 2020, 59, 4868–4873.
Idrees, K. B.; Chen, Z. J.; Zhang, X.; Mian, M. R.; Drout, R. J.; Islamoglu, T.; Farha, O. K. Tailoring pore aperture and structural defects in zirconium-based metal-organic frameworks for krypton/xenon separation. Chem. Mater. 2020, 32, 3776–3782.