Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.
Hoonjan, M.; Sachdeva, G.; Chandra, S.; Kharkar, P. S.; Sahu, N.; Bhatt, P. Investigation of HSA as a biocompatible coating material for arsenic trioxide nanoparticles. Nanoscale 2018, 10, 8031–8041.
Krauss, I. R.; Picariello, A.; Vitiello, G.; De Santis, A.; Koutsioubas, A.; Houston, J. E.; Fragneto, G.; Paduano, L. Interaction with human serum proteins reveals biocompatibility of phosphocholine-functionalized spions and formation of albumin-decorated nanoparticles. Langmuir 2020, 36, 8777–8791.
Wang, L. R.; Lin, H. Y.; Chi, X. Q.; Sun, C. J.; Huang, J. Q.; Tang, X. X.; Chen, H. M.; Luo, X. J.; Yin, Z. Y.; Gao, J. H. A self-assembled biocompatible nanoplatform for multimodal MR/fluorescence imaging assisted photothermal therapy and prognosis analysis. Small 2018, 14, 1801612.
Pan, G. H.; Ni, J.; Wei, Y. F.; Yu, G. L.; Gentz, R.; Dixit, V. M. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997, 277, 815–818.
Tan, C. Y.; Ban, H.; Kim, Y. H.; Lee, S. K. The heat shock protein 27 (Hsp27) operates predominantly by blocking the mitochondrial-independent/extrinsic pathway of cellular apoptosis. Mol. Cells 2009, 27, 703.
Li, J. Y.; Paragas, N.; Ned, R. M.; Qiu, A. D.; Viltard, M.; Leete, T.; Drexler, I. R.; Chen, X.; Sanna-Cherchi, S.; Mohammed, F. et al. Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev. Cell 2009, 16, 35–46.
Liu, J. L.; Chen, B. X.; Zhao, B.; Luo, X. B.; Li, J. F.; Xie, Y. T.; Li, B. L.; Chen, H. Y.; Zhao, M. Y.; Yan, H. D. Effect of hirudin on arterialized venous flap survival in rabbits. Biomed. Pharmacother. 2021, 142, 111981.
Ki, M. R.; Kim, J. K.; Kim, S. H.; Nguyen, T. K. M.; Kim, K. H.; Pack, S. P. Compartment-restricted and rate-controlled dual drug delivery system using a biosilica-enveloped ferritin cage. J. Ind. Eng. Chem. 2020, 81, 367–374.
Murata, M.; Narahara, S.; Kawano, T.; Hamano, N.; Piao, J. S.; Kang, J. H.; Ohuchida, K.; Murakami, T.; Hashizume, M. Design and function of engineered protein nanocages as a drug delivery system for targeting pancreatic cancer cells via neuropilin-1. Mol. Pharm. 2015, 12, 1422–1430.
Reuter, L. J.; Shahbazi, M. A.; Mäkilä, E. M.; Salonen, J. J.; Saberianfar, R.; Menassa, R.; Santos, H. A.; Joensuu, J. J.; Ritala, A. Coating nanoparticles with plant-produced transferrin-hydrophobin fusion protein enhances their uptake in cancer cells. Bioconjug. Chem. 2017, 28, 1639–1648.
Lucon, J.; Abedin, M. J.; Uchida, M.; Liepold, L.; Jolley, C. C.; Young, M.; Douglas, T. A click chemistry based coordination polymer inside small heat shock protein. Chem. Commun. 2010, 46, 264–266.
Varpness, Z.; Suci, P. A.; Ensign, D.; Young, M. J.; Douglas, T. Photosensitizer efficiency in genetically modified protein cage architectures. Chem. Commun. 2009, 3726–3728.
Gillitzer, E.; Willits, D.; Young, M.; Douglas, T. Chemical modification of a viral cage for multivalent presentation. Chem. Commun. 2002, 2390–2391.
Ding, D.; Yang, C.; Lv, C.; Li, J.; Tan, W. H. Improving tumor accumulation of aptamers by prolonged blood circulation. Anal. Chem. 2020, 92, 4108–4114.
Brandt, M.; Cardinale, J.; Giammei, C.; Guarrochena, X.; Happl, B.; Jouini, N.; Mindt, T. L. Mini-review: Targeted radiopharmaceuticals incorporating reversible, low molecular weight albumin binders. Nucl. Med. Biol. 2019, 70, 46–52.
Chen, X.; Ling, X.; Zhao, L. L.; Xiong, F.; Hollett, G.; Kang, Y.; Barrett, A.; Wu, J. Biomimetic shells endow sub-50 nm nanoparticles with ultrahigh paclitaxel payloads for specific and robust chemotherapy. ACS. Appl. Mater. Interfaces 2018, 10, 33976–33985.
Wang, M. Y.; Zhang, L.; Cai, Y. F.; Yang, Y.; Qiu, L. P.; Shen, Y. T.; Jin, J.; Zhou, J.; Chen, J. H. Bioengineered human serum albumin fusion protein as target/enzyme/pH three-stage propulsive drug vehicle for tumor therapy. ACS Nano 2020, 14, 17405–17418.
Desai, N.; Trieu, V.; Yao, Z. W.; Louie, L.; Ci, S.; Yang, A.; Tao, C. L.; De, T.; Beals, B.; Dykes, D. et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res. 2006, 12, 1317–1324.
Wang, D. F.; Liang, N.; Kawashima, Y.; Cui, F. D.; Yan, P. F.; Sun, S. P. Biotin-modified bovine serum albumin nanoparticles as a potential drug delivery system for paclitaxel. J. Mater. Sci. 2019, 54, 8613–8626.
Das, R. P.; Singh, B. G.; Kunwar, A.; Ramani, M. V.; Subbaraju, G. V.; Hassan, P. A.; Priyadarsini, K. I. Tuning the binding, release and cytotoxicity of hydrophobic drug by bovine serum albumin nanoparticles: Influence of particle size. Colloids Surf. B Biointerfaces 2017, 158, 682–688.
Gong, T.; Tan, T. T.; Zhang, P.; Li, H. H.; Deng, C. F.; Huang, Y.; Gong, T.; Zhang, Z. R. Palmitic acid-modified bovine serum albumin nanoparticles target scavenger receptor-A on activated macrophages to treat rheumatoid arthritis. Biomaterials 2020, 258, 120296.
Nosrati, H.; Abbasi, R.; Charmi, J.; Rakhshbahar, A.; Aliakbarzadeh, F.; Danafar, H.; Davaran, S. Folic acid conjugated bovine serum albumin: An efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells. Int. J. Biol. Macromol. 2018, 117, 1125–1132.
Gaowa, A.; Horibe, T.; Kohno, M.; Sato, K.; Harada, H.; Hiraoka, M.; Tabata, Y.; Kawakami, K. Combination of hybrid peptide with biodegradable gelatin hydrogel for controlled release and enhancement of anti-tumor activity in vivo. J. Controlled Release 2014, 176, 1–7.
Chen, X. J.; Zou, J. F.; Zhang, K.; Zhu, J. J.; Zhang, Y.; Zhu, Z. H.; Zheng, H. Y.; Li, F. Z.; Piao, J. G. Photothermal/matrix metalloproteinase-2 dual-responsive gelatin nanoparticles for breast cancer treatment. Acta. Pharm. Sin. B 2021, 11, 271–282.
Zhou, H.; He, G.; Sun, Y. B.; Wang, J. G.; Wu, H. T.; Jin, P.; Zha, Z. Cryptobiosis-inspired assembly of “AND” logic gate platform for potential tumor-specific drug delivery. Acta Pharm. Sin. B 2021, 11, 534–543.
He, G.; Chen, S.; Xu, Y. J.; Miao, Z. H.; Ma, Y.; Qian, H. S.; Lu, Y.; Zha, Z. B. Charge reversal induced colloidal hydrogel acts as a multi-stimuli responsive drug delivery platform for synergistic cancer therapy. Mater. Horiz. 2019, 6, 711–716.
Cheng, W. Y.; Wang, B. L.; Zhang, C. Y.; Dong, Q. N.; Qian, J. J.; Zha, L.; Chen, W. D.; Hong, L. F. Preparation and preliminary pharmacokinetics study of GNA-loaded zein nanoparticles. J. Pharm. Pharmacol. 2019, 71, 1626–1634.
Bao, X. Y.; Qian, K.; Yao, P. Oral delivery of exenatide-loaded hybrid zein nanoparticles for stable blood glucose control and β-cell repair of type 2 diabetes mice. J. Nanobiotechnol. 2020, 18, 67.
Shinde, P.; Agraval, H.; Singh, A.; Yadav, U. C. S.; Kumar, U. Synthesis of luteolin loaded zein nanoparticles for targeted cancer therapy improving bioavailability and efficacy. J. Drug. Deliv. Sci. Technol. 2019, 52, 369–378.
Alqahtani, M. S.; Syed, R.; Alshehri, M. Size-dependent phagocytic uptake and immunogenicity of gliadin nanoparticles. Polymers 2020, 12, 2576.
Yang, Y. Y.; Zhang, M.; Liu, Z. P.; Wang, K.; Yu, D. G. Meletin sustained-release gliadin nanoparticles prepared via solvent surface modification on blending electrospraying. Appl. Surf. Sci. 2018, 434, 1040–1047.
Qian, X. P.; Ge, L.; Yuan, K. J.; Li, C.; Zhen, X.; Cai, W. B.; Cheng, R. S.; Jiang, X. Q. Targeting and microenvironment-improving of phenylboronic acid-decorated soy protein nanoparticles with different sizes to tumor. Theranostics 2019, 9, 7417–7430.
Farooq, M. A.; Aquib, M.; Ghayas, S.; Bushra, R.; Haleem Khan, D.; Parveen, A.; Wang, B. Whey protein: A functional and promising material for drug delivery systems recent developments and future prospects. Polym. Adv. Technol. 2019, 30, 2183–2191.
Castro, M. A. A.; Alric, I.; Brouillet, F.; Peydecastaing, J.; Fullana, S. G.; Durrieu, V. Spray-dried succinylated soy protein microparticles for oral ibuprofen delivery. AAPS PharmSciTech 2019, 20, 79.
Tang, J. H.; Zhou, J. P.; Chen, F. H.; Sun, T. T.; Kuang, W. J.; Feng, R. X. Synthesis, characterization and drug-loading capacity of novel amphiphilic amino acid copolymer. J. China Pharm. Univ. 2012, 43, 211–215.
Loureiro, A.; Nogueira, E.; Azoia, N. G.; Sárria, M. P.; Abreu, A. S.; Shimanovich, U.; Rollett, A.; Härmark, J.; Hebert, H.; Guebitz, G. et al. Size controlled protein nanoemulsions for active targeting of folate receptor positive cells. Colloids Surf. B Biointerfaces 2015, 135, 90–98.
Yang, P. P.; Zhang, K.; He, P. P.; Fan, Y.; Gao X. J.; Gao, X. F.; Chen, Z. M.; Hou, D. Y.; Li, Y.; Yi, Y. et al. A biomimetic platelet based on assembling peptides initiates artificial coagulation. Sci. Adv. 2020, 6, eaaz4107.
Bao, C. Y.; Yin, Y. H.; Zhang, Q. Synthesis and assembly of laccase-polymer giant amphiphiles by self-catalyzed CuAAC click chemistry. Biomacromolecules 2018, 19, 1539–1551.
Mohammad-Beigi, H.; Shojaosadati, S. A.; Morshedi, D.; Arpanaei, A.; Marvian, A. T. Preparation and in vitro characterization of gallic acid-loaded human serum albumin nanoparticles. J. Nanopart. Res. 2015, 17, 167.
Li, W.; Garringer, H. J.; Goodwin, C. B.; Richine, B.; Acton, A.; VanDuyn, N.; Muhoberac, B. B.; Irimia-Dominguez, J.; Chan, R. J.; Peacock, M. et al. Systemic and cerebral iron homeostasis in ferritin knock-out mice. PLoS One 2015, 10, e0117435.
Thompson, K.; Menzies, S.; Muckenthaler, M.; Torti, F. M.; Wood, T.; Torti, S. V.; Hentze, M. W.; Beard, J.; Connor, J. Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. J. Neurosci. Res. 2003, 71, 46–63.
Pieters, B. J. G. E.; Van Eldijk, M. B.; Nolte, R. J. M.; Mecinović, J. Natural supramolecular protein assemblies. Chem. Soc. Rev. 2016, 45, 24–39.
Carmona, F.; Poli, M.; Bertuzzi, M.; Gianoncelli, A.; Gangemi, F.; Arosio, P. Study of ferritin self-assembly and heteropolymer formation by the use of fluorescence resonance energy transfer (FRET) technology. Biochim. Biophys. Acta. Gen. Subj. 2017, 1861, 522–532.
Wege, C.; Koch, C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1591.
Fiedler, J. D.; Fishman, M. R.; Brown, S. D.; Lau, J.; Finn, M. G. Multifunctional enzyme packaging and catalysis in the Qβ protein nanoparticle. Biomacromolecules 2018, 19, 3945–3957.
Wang, J. C.; Liu, Y. C.; Chen, Y. M.; Zhang, T.; Wang, A. P.; Wei, Q.; Liu, D. M.; Wang, F. Y.; Zhang, G. P. Capsid assembly is regulated by amino acid residues asparagine 47 and 48 in the VP2 protein of porcine parvovirus. Vet. Microbiol. 2021, 253, 108974.
Harrison, P. M.; Arosio, P. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta Bioenerg. 1996, 1275, 161–203.
Arosio, P.; Elia, L.; Poli, M. Ferritin, cellular iron storage and regulation. IUBMB Life 2017, 69, 414–422.
Uchida, M.; Kang, S.; Reichhardt, C.; Harlen, K.; Douglas, T. The ferritin superfamily: Supramolecular templates for materials synthesis. Biochim. Biophys. Acta. Gen. Subj. 2010, 1800, 834–845.
Harrison, P. M.; Fischbach, F. A.; Hoy, T. G.; Haggis, G. H. Ferric oxyhydroxide core of ferritin. Nature 1967, 216, 1188–1190.
Bertini, I.; Lalli, D.; Mangani, S.; Pozzi, C.; Rosa, C.; Theil, E. C.; Turano, P. Structural insights into the ferroxidase site of ferritins from higher eukaryotes. J. Am. Chem. Soc. 2012, 134, 6169–6176.
Arosio, P.; Ingrassia, R.; Cavadini, P. Ferritins: A family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta. Gen. Subj. 2009, 1790, 589–599.
Torti, F. M.; Torti, S. V. Regulation of ferritin genes and protein. Blood 2002, 99, 3505–3516.
Damiani, V.; Falvo, E.; Fracasso, G.; Federici, L.; Pitea, M.; De Laurenzi, V.; Sala, G.; Ceci, P. Therapeutic efficacy of the novel stimuli-sensitive nano-ferritins containing doxorubicin in a head and neck cancer model. Int. J. Mol. Sci. 2017, 18, 1555.
Fracasso, G.; Falvo, E.; Colotti, G.; Fazi, F.; Ingegnere, T.; Amalfitano, A.; Doglietto, G. B.; Alfieri, S.; Boffi, A.; Morea, V. et al. Selective delivery of doxorubicin by novel stimuli-sensitive nano-ferritins overcomes tumor refractoriness. J. Controlled Release 2016, 239, 10–18.
Falvo, E.; Tremante, E.; Arcovito, A.; Papi, M.; Elad, N.; Boffi, A.; Morea, V.; Conti, G.; Toffoli, G.; Fracasso, G. et al. Improved doxorubicin encapsulation and pharmacokinetics of ferritin-fusion protein nanocarriers bearing proline, serine, and alanine elements. Biomacromolecules 2016, 17, 514–522.
Huang, C.; Chu, C. C.; Wang, X. Y.; Lin, H. R.; Wang, J. Q.; Zeng, Y.; Zhu, W. Z.; Wang, Y. X. J.; Liu, G. Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy. Biomater. Sci. 2017, 5, 1512–1516.
Pandolfi, L.; Bellini, M.; Vanna, R.; Morasso, C.; Zago, A.; Carcano, S.; Avvakumova, S.; Bertolini, J. A.; Rizzuto, M. A.; Colombo, M. et al. H-ferritin enriches the curcumin uptake and improves the therapeutic efficacy in triple negative breast cancer cells. Biomacromolecules 2017, 18, 3318–3330.
Falvo, E.; Malagrinò, F.; Arcovito, A.; Fazi, F.; Colotti, G.; Tremante, E.; Di Micco, P.; Braca, A.; Opri, R.; Giuffrè, A. et al. The presence of glutamate residues on the PAS sequence of the stimuli-sensitive nano-ferritin improves in vivo biodistribution and mitoxantrone encapsulation homogeneity. J. Controlled Release 2018, 275, 177–185.
Ryser, H.; Caulfield, J. B.; Aub, J. C. Studies on protein uptake by isolated tumor cells. I. Electron microscopic evidence of ferritin uptake by ehrlich ascites tumor cells. J. Cell Biol. 1962, 14, 255–268.
Caulfield, J. B. Studies on ferritin uptake by isolated tumor cells. Lab. Invest. 1963, 12, 1018–1025.
Easty, G. C.; Yarnell, M. M.; Andrews, R. D. The uptake of proteins by normal and tumour cells in vitro. Br. J. Cancer 1965, 18, 354–367.
Li, L.; Fang, C. J.; Ryan, J. C.; Niemi, E. C.; Lebrón, J. A.; Björkman, P. J.; Arase, H.; Torti, F. M.; Torti, S. V.; Nakamura, M. C. et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc. Natl. Acad. Sci. USA 2010, 107, 3505–3510.
Kawabata, H. Transferrin and transferrin receptors update. Free Radic. Biol. Med. 2019, 133, 46–54.
Fan, K. L.; Cao, C. Q.; Pan, Y. X.; Lu, D.; Yang, D. L.; Feng, J.; Song, L. N.; Liang, M. M.; Yan, X. Y. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012, 7, 765.
Wang, B.; Tang, M.; Yuan, Z.; Li, Z.; Hu, B.; Bai, X.; Chu, J.; Xu, X.; Zhang, X. Targeted delivery of a sting agonist to brain tumors using bioengineered protein nanoparticles for enhanced immunotherapy. Bioact. Mater. 2022, 16, 232–248.
Lajoie, J. M.; Shusta, E. V. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 613–631.
Fan, K. L.; Jia, X. H.; Zhou, M.; Wang, K.; Conde, J.; He, J. Y.; Tian, J.; Yan, X. Y. Ferritin nanocarrier traverses the blood brain barrier and kills glioma. ACS Nano 2018, 12, 4105–4115.
Richter, K.; Haslbeck, M.; Buchner, J. The heat shock response: Life on the verge of death. Mol. Cell. 2010, 40, 253–266.
Guo, M.; Liu, J. H.; Ma, X.; Luo, D. X.; Gong, Z. H.; Lu, M. H. The plant heat stress transcription factors (HSFs): Structure, regulation, and function in response to abiotic stresses. Front. Plant Sci. 2016, 7, 114.
Shende, P.; Bhandarkar, S.; Prabhakar, B. Heat shock proteins and their protective roles in stem cell biology. Stem Cell Rev. Rep. 2019, 15, 637–651.
Smith, D. F.; Whitesell, L.; Katsanis, E. Molecular chaperones: Biology and prospects for pharmacological intervention. Pharmacol. Rev. 1998, 50, 493–514.
Tsukahara, F.; Yoshioka, T.; Muraki, T. Molecular and functional characterization of HSC54, a novel variant of human heat-shock cognate protein 70. Mol. Pharmacol. 2000, 58, 1257–1263.
Stromer, T.; Fischer, E.; Richter, K.; Haslbeck, M.; Buchner, J. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: The N-terminal domain is important for oligomer assembly and the binding of unfolding proteins. J. Biol. Chem. 2004, 279, 11222–11228.
Kim, K. K.; Kim, R.; Kim, S. H. Crystal structure of a small heat-shock protein. Nature 1998, 394, 595–599.
Kim, R.; Kim, K. K.; Yokota, H.; Kim, S. H. Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl. Acad. Sci. USA 1998, 95, 9129–9133.
Kim, K. K.; Yokota, H.; Santoso, S.; Lerner, D.; Kim, R.; Kim, S. H. Purification, crystallization, and preliminary X-ray crystallographic data analysis of small heat shock protein homolog from Methanococcus jannaschii, a hyperthermophile. J. Struct. Biol. 1998, 121, 76–80.
Flenniken, M. L.; Willits, D. A.; Brumfield, S.; Young, M. J.; Douglas, T. The small heat shock protein cage from Methanococcus jannaschii is a versatile nanoscale platform for genetic and chemical modification. Nano Lett. 2003, 3, 1573–1576.
Bova, M. P.; Ding, L. L.; Horwitz, J.; Fung, B. K. K. Subunit exchange of αA-crystallin. J. Biol. Chem. 1997, 272, 29511–29517.
Choi, S. H.; Kwon, I. C.; Hwang, K. Y.; Kim, I. S.; Ahn, H. J. Small heat shock protein as a multifunctional scaffold: Integrated tumor targeting and caspase imaging within a single cage. Biomacromolecules 2011, 12, 3099–3106.
Flenniken, M. L.; Liepold, L. O.; Crowley, B. E.; Willits, D. A.; Young, M. J.; Douglas, T. Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture. Chem. Commun. 2005, 447–449.
Kawano, T.; Murata, M.; Kang, J. H.; Piao, J. S.; Narahara, S.; Hyodo, F.; Hamano, N.; Guo, J.; Oguri, S.; Ohuchida, K. et al. Ultrasensitive MRI detection of spontaneous pancreatic tumors with nanocage-based targeted contrast agent. Biomaterials 2018, 152, 37–46.
Suprenant, K. A. Vault ribonucleoprotein particles: Sarcophagi, gondolas, or safety deposit boxes. Biochemistry 2002, 41, 14447–14454.
Van Zon, A.; Mossink, M. H.; Scheper, R. J.; Sonneveld, P.; Wiemer, E. A. C. The vault complex. Cell. Mol. Life Sci. 2003, 60, 1828–1837.
Kedersha, N. L.; Rome, L. H. Isolation and characterization of a novel ribonucleoprotein particle: Large structures contain a single species of small RNA. J. Cell Biol. 1986, 103, 699–709.
Ding, K.; Zhang, X.; Mrazek, J.; Kickhoefer, V. A.; Lai, M.; Ng, H. L.; Yang, O. O.; Rome, L. H.; Zhou, Z. H. Solution structures of engineered vault particles. Structure 2018, 26, 619–626.e3.
Stephen, A. G.; Raval-Fernandes, S.; Huynh, T.; Torres, M.; Kickhoefer, V. A.; Rome, L. H. Assembly of vault-like particles in insect cells expressing only the major vault protein. J. Biol. Chem. 2001, 276, 23217–23220.
Mikyas, Y.; Makabi, M.; Raval-Fernandes, S.; Harrington, L.; Kickhoefer, V. A.; Rome, L. H.; Stewart, P. L. Cryoelectron microscopy imaging of recombinant and tissue derived vaults: Localization of the MVP N termini and VPARP. J. Mol. Biol. 2004, 344, 91–105.
Kickhoefer, V. A.; Liu, Y. E.; Kong, L. B.; Snow, B. E.; Stewart, P. L.; Harrington, L.; Rome, L. H. The telomerase/vault-associated protein TEP1 is required for vault RNA stability and its association with the vault particle. J. Cell Biol. 2001, 152, 157–164.
Frascotti, G.; Galbiati, E.; Mazzucchelli, M.; Pozzi, M.; Salvioni, L.; Vertemara, J.; Tortora, P. The vault nanoparticle: A gigantic ribonucleoprotein assembly involved in diverse physiological and pathological phenomena and an ideal nanovector for drug delivery and therapy. Cancers 2021, 13, 707.
Voth, B. L.; Pelargos, P. E.; Barnette, N. E.; Bhatt, N. S.; Chen, C. H. J.; Lagman, C.; Chung, L. K.; Nguyen, T.; Sheppard, J. P.; Romiyo, P. et al. Intratumor injection of CCL21-coupled vault nanoparticles is associated with reduction in tumor volume in an in vivo model of glioma. J. Neurooncol. 2020, 147, 599–605.
Goldsmith, L. E.; Yu, M.; Rome, L. H.; Monbouquette, H. G. Vault nanocapsule dissociation into halves triggered at low pH. Biochemistry 2007, 46, 2865–2875.
Esfandiary, R.; Kickhoefer, V. A.; Rome, L. H.; Joshi, S. B.; Middaugh, C. R. Structural stability of vault particles. J. Pharm. Sci. 2009, 98, 1376–1386.
Barth, H.; Ulsenheimer, A.; Pape, G. R.; Diepolder, H. M.; Hoffmann, M.; Neumann-Haefelin, C.; Thimme, R.; Henneke, P.; Klein, R.; Paranhos-Baccala, G. et al. Uptake and presentation of hepatitis C virus-like particles by human dendritic cells. Blood 2005, 105, 3605–3614.
Crisci, E.; Bárcena, J.; Montoya, M. Virus-like particles: The new frontier of vaccines for animal viral infections. Vet. Immunol. Immunopathol. 2012, 148, 211–225.
Lin, T. W.; Chen, Z. G.; Usha, R.; Stauffacher, C. V.; Dai, J. B.; Schmidt, T.; Johnson, J. E. The refined crystal structure of cowpea mosaic virus at 2. 8 Å resolution. Virology 1999, 265, 20–34.
Speir, J. A.; Bothner, B.; Qu, C. X.; Willits, D. A.; Young, M. J.; Johnson, J. E. Enhanced local symmetry interactions globally stabilize a mutant virus capsid that maintains infectivity and capsid dynamics. J. Virol. 2006, 80, 3582–3591.
Cui, Z. C.; Gorzelnik, K. V.; Chang, J. Y.; Langlais, C.; Jakana, J.; Young, R.; Zhang, J. J. Structures of Qβ virions, virus-like particles, and the Qβ-murA complex reveal internal coat proteins and the mechanism of host lysis. Proc. Natl. Acad. Sci. USA 2017, 114, 11697–11702.
Franzen, S.; Lommel, S. A. Targeting cancer with ‘smart bombs’: Equipping plant virus nanoparticles for a ‘seek and destroy’ mission. Nanomedicine 2009, 4, 575–588.
Ren, Y. P.; Wong, S. M.; Lim, L. Y. Application of plant viruses as nano drug delivery systems. Pharm. Res. 2010, 27, 2509–2513.
Chung, Y. H.; Cai, H.; Steinmetz, N. F. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv. Drug Deliv. Rev. 2020, 156, 214–235.
Liu, J. L.; Dixit, A. B.; Robertson, K. L.; Qiao, E.; Black, L. W. Viral nanoparticle-encapsidated enzyme and restructured DNA for cell delivery and gene expression. Proc. Natl. Acad. Sci. USA 2014, 111, 13319–13324.
Lam, P.; Steinmetz, N. F. Delivery of siRNA therapeutics using cowpea chlorotic mottle virus-like particles. Biomater. Sci. 2019, 7, 3138–3142.
Frietze, K. M.; Peabody, D. S.; Chackerian, B. Engineering virus-like particles as vaccine platforms. Curr. Opin. Virol. 2016, 18, 44–49.
Balke, I.; Zeltins, A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv. Drug Deliv. Rev. 2019, 145, 119–129.
Neek, M.; Kim, T. I.; Wang, S. W. Protein-based nanoparticles in cancer vaccine development. Nanomed. Nanotechnol. Biol. Med. 2019, 15, 164–174.
Zepeda-Cervantes, J.; Ramírez-Jarquín, J. O.; Vaca, L. Interaction between virus-like particles (VLPs) and pattern recognition receptors (PRRs) from dendritic cells (DCs): Toward better engineering of VLPs. Front. Immunol. 2020, 11, 1100.
Shukla, S.; Wang, C.; Beiss, V.; Cai, H.; Washington II, T.; Murray, A. A.; Gong, X. J.; Zhao, Z. C.; Masarapu, H.; Zlotnick, A. et al. The unique potency of cowpea mosaic virus (CPMV) in situ cancer vaccine. Biomater. Sci. 2020, 8, 5489–5503.
Linder, M. B.; Szilvay, G. R.; Nakari-Setälä, T.; Penttilä, M. E. Hydrophobins: The protein-amphiphiles of filamentous fungi. FEMS Microbiol. Rev. 2005, 29, 877–896.
Wessels, J. G. H. Hydrophobins: Proteins that change the nature of the fungal surface. Adv. Microb. Physiol. 1996, 38, 1–45.
Wösten, H. A. B.; Scholtmeijer, K. Applications of hydrophobins: Current state and perspectives. Appl. Microbiol. Biotechnol. 2015, 99, 1587–1597.
Wessels, J. G. H. Developmental regulation of fungal cell wall formation. Annu. Rev. Phytopathol. 1994, 32, 413–437.
Kwan, A. H.; Winefield, R. D.; Sunde, M.; Matthews, J. M.; Haverkamp, R. G.; Templeton, M. D.; Mackay, J. P. Structural basis for rodlet assembly in fungal hydrophobins. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 3621–3626.
Kallio, J. M.; Linder, M. B.; Rouvinen, J. Crystal structures of hydrophobin HFBII in the presence of detergent implicate the formation of fibrils and monolayer films. J. Biol. Chem. 2007, 282, 28733–28739.
Fang, G. H.; Tang, B.; Liu, Z. T.; Gou, J. X.; Zhang, Y.; Xu, H.; Tang, X. Novel hydrophobin-coated docetaxel nanoparticles for intravenous delivery: In vitro characteristics and in vivo performance. Eur. J. Pharm. Sci. 2014, 60, 1–9.
Maiolo, D.; Pigliacelli, C.; Moreno, P. S.; Violatto, M. B.; Talamini, L.; Tirotta, I.; Piccirillo, R.; Zucchetti, M.; Morosi, L.; Frapolli, R. et al. Bioreducible hydrophobin-stabilized supraparticles for selective intracellular release. ACS Nano 2017, 11, 9413–9423.
Holt, C.; Carver, J. A.; Ecroyd, H.; Thorn, D. C. Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods. J. Dairy Sci. 2013, 96, 6127–6146.
Artym, J.; Zimecki, M. Milk-derived proteins and peptides in clinical trials. Postepy Hig. Med. Dosw. 2013, 67, 800–816.
Elzoghby, A. O.; Abo El-Fotoh, W. S.; Elgindy, N. A. Casein-based formulations as promising controlled release drug delivery systems. J. Controlled Release 2011, 153, 206–216.
Horne, D. S. Casein structure, self-assembly and gelation. Curr. Opin. Colloid Interface Sci. 2002, 7, 456–461.
Huppertz, T.; De Kruif, C. G. Structure and stability of nanogel particles prepared by internal cross-linking of casein micelles. Int. Dairy J. 2008, 18, 556–565.
Kumosinski, T. F.; Brown, E. M.; Farrell, H. M. Jr. Three-dimensional molecular modeling of bovine caseins: An energy-minimized β-casein structure. J. Dairy Sci. 1993, 76, 931–945.
Tai, M. S.; Kegeles, G. A micelle model for the sedimentation behavior of bovine β-casein. Biophys. Chem. 1984, 20, 81–87.
Portnaya, I.; Ben-Shoshan, E.; Cogan, U.; Khalfin, R.; Fass, D.; Ramon, O.; Danino, D. Self-assembly of bovine β-casein below the isoelectric pH. J. Agric. Food Chem. 2008, 56, 2192–2198.
Javor, G. T.; Sood, S. M.; Chang, P.; Slattery, C. W. Interactions of triply phosphorylated human β-casein: Fluorescence spectroscopy and light-scattering studies of conformation and self-association. Arch. Biochem. Biophys. 1991, 289, 39–46.
Livney, Y. D. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 2010, 15, 73–83.
Trejo, R.; Dokland, T.; Jurat-Fuentes, J.; Harte, F. Cryo-transmission electron tomography of native casein micelles from bovine milk. J. Dairy Sci. 2011, 94, 5770–5775.
Pasquali-Ronchetti, I.; Baccarani-Contri, M. Elastic fiber during development and aging. Microsc. Res. Tech. 1997, 38, 428–435.
Martyn, C.; Greenwald, S. A hypothesis about a mechanism for the programming of blood pressure and vascular disease in early life. Clin. Exp. Pharmacol. Physiol. 2001, 28, 948–951.
Faury, G. Function–structure relationship of elastic arteries in evolution: From microfibrils to elastin and elastic fibres. Pathol. Biol. 2001, 49, 310–325.
Tatham, A. S.; Shewry, P. R. Elastomeric proteins: Biological roles, structures and mechanisms. Trends Biochem. Sci. 2000, 25, 567–571.
Yeboah, A.; Cohen, R. I.; Rabolli, C.; Yarmush, M. L.; Berthiaume, F. Elastin-like polypeptides: A strategic fusion partner for biologics. Biotechnol. Bioeng. 2016, 113, 1617–1627.
Straley, K. S.; Heilshorn, S. C. Independent tuning of multiple biomaterial properties using protein engineering. Soft Matter 2009, 5, 114–124.
Catherine, C.; Oh, S. J.; Lee, K. H.; Min, S. E.; Won, J. I.; Yun, H.; Kim, D. M. Engineering thermal properties of elastin-like polypeptides by incorporation of unnatural amino acids in a cell-free protein synthesis system. Biotechnol. Bioprocess Eng. 2015, 20, 417–422.
Bataille, L.; Dieryck, W.; Hocquellet, A.; Cabanne, C.; Bathany, K.; Lecommandoux, S.; Garbay, B.; Garanger, E. Recombinant production and purification of short hydrophobic elastin-like polypeptides with low transition temperatures. Protein Exp. Purif. 2016, 121, 81–87.
Urry, D. W.; Trapane, T. L.; Prasad, K. U. Phase-structure transitions of the elastin polypentapeptide–water system within the framework of composition–temperature studies. Biopolymers 1985, 24, 2345–2356.
Urry, D. W. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 1997, 101, 11007–11028.
Dhandhukia, J. P.; Shi, P.; Peddi, S.; Li, Z.; Aluri, S.; Ju, Y. P.; Brill, D.; Wang, W.; Janib, S. M.; Lin, Y. A. et al. Bifunctional elastin-like polypeptide nanoparticles bind rapamycin and integrins and suppress tumor growth in vivo. Bioconjug. Chem. 2017, 28, 2715–2728.
Utterström, J.; Naeimipour, S.; Selegård, R.; Aili, D. Coiled coil-based therapeutics and drug delivery systems. Adv. Drug Deliv. Rev. 2021, 170, 26–43.
Liu, J.; Zheng, Q.; Deng, Y. Q.; Cheng, C. S.; Kallenbach, N. R.; Lu, M. A seven-helix coiled coil. Proc. Natl. Acad. Sci. USA 2006, 103, 15457–15462.
Apostolovic, B.; Klok, H. A. pH-sensitivity of the E3/K3 heterodimeric coiled coil. Biomacromolecules 2008, 9, 3173–3180.
Fletcher, J. M.; Harniman, R. L.; Barnes, F. R. H.; Boyle, A. L.; Collins, A.; Mantell, J.; Sharp, T. H.; Antognozzi, M.; Booth, P. J.; Linden, N. et al. Self-assembling cages from coiled-coil peptide modules. Science 2013, 340, 595–599.
Ljubetič, A.; Lapenta, F.; Gradišar, H.; Drobnak, I.; Aupič, J.; Strmšek, Ž.; Lainšček, D.; Hafner-Bratkovič, I.; Majerle, A.; Krivec, N. et al. Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nat. Biotechnol. 2017, 35, 1094–1101.
Raman, S.; Machaidze, G.; Lustig, A.; Aebi, U.; Burkhard, P. Structure-based design of peptides that self-assemble into regular polyhedral nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2006, 2, 95–102.
Beck, K.; Gambee, J. E.; Kamawal, A.; Bächinger, H. P. A single amino acid can switch the oligomerization state of the α-helical coiled-coil domain of cartilage matrix protein. EMBO J. 1997, 16, 3767–3777.
Dames, S. A.; Kammerer, R. A.; Wiltscheck, R.; Engel, J.; Alexandrescu, A. T. NMR structure of a parallel homotrimeric coiled coil. Nat. Struct. Biol. 1998, 5, 687–691.
Klatt, A. R.; Becker, A. K. A.; Neacsu, C. D.; Paulsson, M.; Wagener, R. The matrilins: Modulators of extracellular matrix assembly. Int. J. Biochem. Cell Biol. 2011, 43, 320–330.
Wiltscheck, R.; Dames, S. A.; Alexandrescu, A. T.; Kammerer, R. A.; Schulthess, T.; Blommers, M. J. J.; Engel, J. Heteronuclear NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced forms. Protein Sci. 1997, 6, 1734–1745.
Eriksson, M.; Hassan, S.; Larsson, R.; Linder, S.; Ramqvist, T.; Lövborg, H.; Vikinge, T.; Figgemeier, E.; Müller, J.; Stetefeld, J. et al. Utilization of a right-handed coiled-coil protein from archaebacterium staphylothermus marinus as a carrier for cisplatin. Anticancer Res. 2009, 29, 11–18.
Fan, J. Q.; Fan, Y.; Wei, Z. J.; Li, Y. J.; Li, X. D.; Wang, L.; Wang, H. Transformable peptide nanoparticles inhibit the migration of N-cadherin overexpressed cancer cells. Chin. Chem. Lett. 2020, 31, 1787–1791.
Zhou, X. Y.; Su, X. K.; Zhou, C. C. Preparation of diblock amphiphilic polypeptide nanoparticles for medical applications. Eur. Polym. J. 2018, 100, 132–136.
Choi, H.; Liu, T.; Nath, K.; Zhou, R.; Chen, I. W. Peptide nanoparticle with pH-sensing cargo solubility enhances cancer drug efficiency. Nano Today 2017, 13, 15–22.
Sigg, S. J.; Postupalenko, V.; Duskey, J. T.; Palivan, C. G.; Meier, W. Stimuli-responsive codelivery of oligonucleotides and drugs by self-assembled peptide nanoparticles. Biomacromolecules 2016, 17, 935–945.
Gong, Z. Y.; Lao, J.; Gao, F.; Lin, W. P.; Yu, T.; Zhou, B. L.; Dong, J. H.; Liu, H.; Bai, J. K. pH-triggered geometrical shape switching of a cationic peptide nanoparticle for cellular uptake and drug delivery. Colloids Surf. B Biointerfaces 2020, 188, 110811.
Gong, Z. Y.; Liu, X. Y.; Zhou, B. L.; Wang, G. H.; Guan, X. W.; Xu, Y.; Zhang, J. J.; Hong, Z. X.; Cao, J. J.; Sun, X. R. et al. Tumor acidic microenvironment-induced drug release of RGD peptide nanoparticles for cellular uptake and cancer therapy. Colloids Surf. B Biointerfaces 2021, 202, 111673.
Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011, 6, 815–823.
Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K. K.; Kamal, M. A.; Garg, N.; Ruokolainen, J.; Das, B. C.; Kumar, D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol. 2021, 69, 166–177.
Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.
Hoshyar, N.; Gray, S.; Han, H. B.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11, 673–692.
Li, H. L.; Li, J. M.; He, X. Y.; Zhang, B.; Liu, C. X.; Li, Q. F.; Zhu, Y.; Huang, W. L.; Zhang, W.; Qian, H. et al. Histology and antitumor activity study of PTX-loaded micelle, a fluorescent drug delivery system prepared by PEG-TPP. Chin. Chem. Lett. 2019, 30, 1083–1088.
Huang, K. Z.; Gao, M. Y.; Fan, L.; Lai, Y. Y.; Fan, H. W.; Hua, Z. Z. IR820 covalently linked with self-assembled polypeptide for photothermal therapy applications in cancer. Biomater. Sci. 2018, 6, 2925–2931.
Huang, X.; Yin, Y. L.; Wu, M.; Zan, W.; Yang, Q. LyP-1 peptide-functionalized gold nanoprisms for SERRS imaging and tumor growth suppressing by PTT induced-hyperthermia. Chin. Chem. Lett. 2019, 30, 1335–1340.
Wen, S. F.; Zhang, K.; Li, Y.; Fan, J. Q.; Chen, Z. M.; Zhang, J. P.; Wang, H.; Wang, L. A self-assembling peptide targeting VEGF receptors to inhibit angiogenesis. Chin. Chem. Lett. 2020, 31, 3153–3157.
Peng, J. F.; Wang, R. R.; Sun, W. R.; Huang, M. H.; Wang, R.; Li, Y. J.; Wang, P. Y.; Sun, G. B.; Xie, S. Y. Delivery of miR-320a-3p by gold nanoparticles combined with photothermal therapy for directly targeting Sp1 in lung cancer. Biomater. Sci. 2021, 9, 6528–6541.
Xiao, Y. J.; Zhang, Q.; Wang, Y. Y.; Wang, B.; Sun, F. N.; Han, Z. Y.; Feng, Y. Q.; Yang, H. T.; Meng, S. X.; Wang, Z. F. Dual-functional protein for one-step production of a soluble and targeted fluorescent dye. Theranostics 2018, 8, 3111–3125.
Fan, R. R.; Mei, L.; Gao, X.; Wang, Y. L.; Xiang, M. L.; Zheng, Y.; Tong, A. P.; Zhang, X. N.; Han, B.; Zhou, L. X. et al. Self-assembled bifunctional peptide as effective drug delivery vector with powerful antitumor activity. Adv. Sci. 2017, 4, 1600285.
Pastorino, F.; Brignole, C.; Marimpietri, D.; Cilli, M.; Gambini, C.; Ribatti, D.; Longhi, R.; Allen, T. M.; Corti, A.; Ponzoni, M. Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res. 2003, 63, 7400–7409.
Garde, S. V.; Forté, A. J.; Ge, M.; Lepekhin, E. A.; Panchal, C. J.; Rabbani, S. A.; Wu, J. J. Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects. Anti-Cancer Drugs 2007, 18, 1189–1200.
Negussie, A. H.; Miller, J. L.; Reddy, G.; Drake, S. K.; Wood, B. J.; Dreher, M. R. Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J. Controlled Release 2010, 143, 265–273.
Sudimack, J.; Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 2000, 41, 147–162.
Lu, Y. J.; Low, P. S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev. 2012, 64, 342–352.
Thong, Q. X.; Biabanikhankahdani, R.; Ho, K. L.; Alitheen, N. B.; Tan, W. S. Thermally-responsive virus-like particle for targeted delivery of cancer drug. Sci. Rep. 2019, 9, 3945.
Chen, H. M.; Qin, Z. N.; Zhao, J. M.; He, Y.; Ren, E.; Zhu, Y.; Liu, G.; Mao, C. B.; Zheng, L. Cartilage-targeting and dual MMP-13/pH responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials 2019, 225, 119520.
Högemann-Savellano, D.; Bos, E.; Blondet, C.; Sato, F.; Abe, T.; Josephson, L.; Weissleder, R.; Gaudet, J.; Sgroi, D.; Peters, P. J. et al. The transferrin receptor: A potential molecular imaging marker for human cancer. Neoplasia 2003, 5, 495–506.
Mendes-Jorge, L.; Ramos, D.; Valença, A.; López-Luppo, M.; Pires, V. M. R.; Catita, J.; Nacher, V.; Navarro, M.; Carretero, A.; Rodriguez-Baeza, A. et al. L-ferritin binding to scara5: A new iron traffic pathway potentially implicated in retinopathy. PLoS One 2014, 9, e106974.
Dong, Y. X.; Ma, Y. M.; Li, X.; Wang, F.; Zhang, Y. ERK-peptide-inhibitor-modified ferritin enhanced the therapeutic effects of paclitaxel in cancer cells and spheroids. Mol. Pharm. 2021, 18, 3365–3377.
Owens III, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93–102.
Singh, A.; Xu, J.; Mattheolabakis, G.; Amiji, M. EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 589–600.
Hu, H.; Steinmetz, N. F. Doxorubicin-loaded physalis mottle virus particles function as a pH-responsive prodrug enabling cancer therapy. Biotechnol. J. 2020, 15, 2000077.
Wang, C. Y.; Zhang, C.; Li, Z. L.; Yin, S.; Wang, Q.; Guo, F. X.; Zhang, Y.; Yu, R.; Liu, Y. D.; Su, Z. G. Extending half life of H-ferritin nanoparticle by fusing albumin binding domain for doxorubicin encapsulation. Biomacromolecules 2018, 19, 773–781.
Jin, P. P.; Sha, R.; Zhang, Y. J.; Liu, L.; Bian, Y. P.; Qian, J.; Qian, J. Y.; Lin, J.; Ishimwe, N.; Hu, Y. et al. Blood circulation-prolonging peptides for engineered nanoparticles identified via phage display. Nano Lett. 2019, 19, 1467–1478.
Chen, Y. X.; Wei, C. X.; Lyu, Y. Q.; Chen, H. Z.; Jiang, G.; Gao, X. L. Biomimetic drug-delivery systems for the management of brain diseases. Biomater. Sci. 2020, 8, 1073–1088.
Zhang, H. Y.; Van Os, W. L.; Tian, X. B.; Zu, G. Y.; Ribovski, L.; Bron, R.; Bussmann, J.; Kros, A.; Liu, Y.; Zuhorn, I. S. Development of curcumin-loaded zein nanoparticles for transport across the blood-brain barrier and inhibition of glioblastoma cell growth. Biomater. Sci. 2021, 9, 7092–7103.
Wen, L. J.; Peng, Y.; Wang, K.; Huang, Z. H.; He, S. Y.; Xiong, R. W.; Wu, L. P.; Zhang, F. T.; Hu, F. Q. Regulation of pathological BBB restoration via nanostructured ROS-responsive glycolipid-like copolymer entrapping siVEGF for glioblastoma targeted therapeutics. Nano Res. 2022, 15, 1455–1465.
Li, Y. R.; Zhang, X. J.; Qi, Z. F.; Guo, X. L.; Liu, X. P.; Shi, W. J.; Liu, Y.; Du, L. B. The enhanced protective effects of salvianic acid A: A functionalized nanoparticles against ischemic stroke through increasing the permeability of the blood-brain barrier. Nano Res. 2020, 13, 2791–2802.
Pang, H. H.; Huang, C. Y.; Chou, Y. W.; Lin, C. J.; Zhou, Z. L.; Shiue, Y. L.; Wei, K. C.; Yang, H. W. Bioengineering fluorescent virus-like particle/RNAi nanocomplexes act synergistically with temozolomide to eradicate brain tumors. Nanoscale 2019, 11, 8102–8109.
Liu, W.; Lin, Q.; Fu, Y.; Huang, S. Q.; Guo, C. Q.; Li, L.; Wang, L. L.; Zhang, Z. R.; Zhang, L. Target delivering paclitaxel by ferritin heavy chain nanocages for glioma treatment. J. Controlled Release 2020, 323, 191–202.
Huang, C. W.; Chuang, C. P.; Chen, Y. J.; Wang, H. Y.; Lin, J. J.; Huang, C. Y.; Wei, K. C.; Huang, F. T. Integrin α2β1-targeting ferritin nanocarrier traverses the blood-brain barrier for effective glioma chemotherapy. J. Nanobiotechnol. 2021, 19, 180.
Zhao, S.; Duan, H. X.; Yang, Y. L.; Yan, X. Y.; Fan, K. L. Fenozyme protects the integrity of the blood-brain barrier against experimental cerebral malaria. Nano Lett. 2019, 19, 8887–8895.
Chen, Z. Y.; Liao, T.; Wan, L. H.; Kuang, Y.; Liu, C.; Duan, J. L.; Xu, X. Y.; Xu, Z. Q.; Jiang, B. B.; Li, C. Dual-stimuli responsive near-infrared emissive carbon dots/hollow mesoporous silica-based integrated theranostics platform for real-time visualized drug delivery. Nano Res. 2021, 14, 4264–4273.
Li, H. P.; Zhou, Z. W.; Zhang, F. R.; Guo, Y. X.; Yang, X.; Jiang, H. L.; Tan, F.; Oupicky, D.; Sun, M. J. A networked swellable dextrin nanogels loading Bcl2 siRNA for melanoma tumor therapy. Nano Res. 2018, 11, 4627–4642.
Yao, H. C.; Zhao, W. W.; Zhang, S. G.; Guo, X. F.; Li, Y.; Du, B. Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J. Mater. Chem. B 2018, 6, 3107–3115.
Niikura, K.; Sugimura, N.; Musashi, Y.; Mikuni, S.; Matsuo, Y.; Kobayashi, S.; Nagakawa, K.; Takahara, S.; Takeuchi, C.; Sawa, H. et al. Virus-like particles with removable cyclodextrins enable glutathione-triggered drug release in cells. Mol. BioSyst. 2013, 9, 501–507.
Aljabali, A. A. A.; Shukla, S.; Lomonossoff, G. P.; Steinmetz, N. F.; Evans, D. J. CPMV-DOX delivers. Mol. Pharm. 2013, 10, 3–10.
Nguyen, B.; Tolia, N. H. Protein-based antigen presentation platforms for nanoparticle vaccines. npj Vaccines 2021, 6, 70.
Ward, B. J.; Séguin, A.; Couillard, J.; Trépanier, S.; Landry, N. Phase III: Randomized observer-blind trial to evaluate lot-to-lot consistency of a new plant-derived quadrivalent virus like particle influenza vaccine in adults 18–49 years of age. Vaccine 2021, 39, 1528–1533.
Chichester, J. A.; Green, B. J.; Jones, R. M.; Shoji, Y.; Miura, K.; Long, C. A.; Lee, C. K.; Ockenhouse, C. F.; Morin, M. J.; Streatfield, S. J. et al. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: A phase 1 dose-escalation study in healthy adults. Vaccine 2018, 36, 5865–5871.
Pillet, S.; Aubin, É.; Trépanier, S.; Poulin, J. F.; Yassine-Diab, B.; Meulen, J. T.; Ward, B. J.; Landry, N. Humoral and cell-mediated immune responses to H5N1 plant-made virus-like particle vaccine are differentially impacted by alum and GLA-SE adjuvants in a phase 2 clinical trial. npj Vaccines 2018, 3, 3.
Chichester, J. A.; Jones, R. M.; Green, B. J.; Stow, M.; Miao, F. D.; Moonsammy, G.; Streatfield, S. J.; Yusibov, V. Safety and immunogenicity of a plant-produced recombinant hemagglutinin-based influenza vaccine (HAI-05) derived from A/indonesia/05/2005 (H5N1) influenza virus: A phase 1 randomized, double-blind, placebo-controlled, dose-escalation study in healthy adults. Viruses 2012, 4, 3227–3244.
Cummings, J. F.; Guerrero, M. L.; Moon, J. E.; Waterman, P.; Nielsen, R. K.; Jefferson, S.; Gross, F. L.; Hancock, K.; Katz, J. M.; Yusibov, V. Safety and immunogenicity of a plant-produced recombinant monomer hemagglutinin-based influenza vaccine derived from influenza a (H1N1)pdm09 virus: A phase 1 dose-escalation study in healthy adults. Vaccine 2014, 32, 2251–2259.
Ortega-Rivera, O. A.; Shin, M. D.; Chen, A.; Beiss, V.; Moreno-Gonzalez, M. A.; Lopez-Ramirez, M. A.; Reynoso, M.; Wang, H.; Hurst, B. L.; Wang, J. et al. Trivalent subunit vaccine candidates for COVID-19 and their delivery devices. J. Am. Chem. Soc. 2021, 143, 14748–14765.
Christiansen, D.; Earnest-Silveira, L.; Chua, B.; Meuleman, P.; Boo, I.; Grubor-Bauk, B.; Jackson, D. C.; Keck, Z. Y.; Foung, S. K. H.; Drummer, H. E. et al. Immunological responses following administration of a genotype 1a/1b/2/3a quadrivalent HCV VLP vaccine. Sci. Rep. 2018, 8, 6483.
Zabel, F.; Mohanan, D.; Bessa, J.; Link, A.; Fettelschoss, A.; Saudan, P.; Kündig, T. M.; Bachmann, M. F. Viral particles drive rapid differentiation of memory B cells into secondary plasma cells producing increased levels of antibodies. J. Immunol. 2014, 192, 5499–5508.
Gomes, A. C.; Mohsen, M.; Bachmann, M. F. Harnessing nanoparticles for immunomodulation and vaccines. Vaccines 2017, 5, 6.
Kanekiyo, M.; Wei, C. J.; Yassine, H. M.; McTamney, P. M.; Boyington, J. C.; Whittle, J. R. R.; Rao, S. S.; Kong, W. P.; Wang, L. S.; Nabel, G. J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 2013, 499, 102–106.
Kang, Y. F.; Sun, C.; Zhuang, Z.; Yuan, R. Y.; Zheng, Q. B.; Li, J. P.; Zhou, P. P.; Chen, X. C.; Liu, Z.; Zhang, X. et al. Rapid development of SARS-CoV-2 spike protein receptor-binding domain self-assembled nanoparticle vaccine candidates. ACS Nano 2021, 15, 2738–2752.
Bruun, T. U. J.; Andersson, A. M. C.; Draper, S. J.; Howarth, M. Engineering a rugged nanoscaffold to enhance plug-and-display vaccination. ACS Nano 2018, 12, 8855–8866.
Hsia, Y.; Bale, J. B.; Gonen, S.; Shi, D.; Sheffler, W.; Fong, K. K.; Nattermann, U.; Xu, C.; Huang, P.-S.; Ravichandran, R. et al. Corrigendum: Design of a hyperstable 60-subunit protein icosahedron. Nature 2016, 540, 150.
Bale, J. B.; Gonen, S.; Liu, Y. X.; Sheffler, W.; Ellis, D.; Thomas, C.; Cascio, D.; Yeates, T. O.; Gonen, T.; King, N. P. et al. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 2016, 353, 389–394.
Babapoor, S.; Neef, T.; Mittelholzer, C.; Girshick, T.; Garmendia, A.; Shang, H. W.; Khan, M. I.; Burkhard, P. A novel vaccine using nanoparticle platform to present immunogenic M2e against avian influenza infection. Influenza Res. Treat. 2011, 2011, 126794.
Champion, C. I.; Kickhoefer, V. A.; Liu, G. C.; Moniz, R. J.; Freed, A. S.; Bergmann, L. L.; Vaccari, D.; Raval-Fernandes, S.; Chan, A. M.; Rome, L. H. et al. A vault nanoparticle vaccine induces protective mucosal immunity. PLoS One 2009, 4, e5409.
Hu, H.; Steinmetz, N. F. Development of a virus-like particle-based anti-HER2 breast cancer vaccine. Cancers 2021, 13, 2909.
Wang, W. J.; Liu, Z. D.; Zhou, X. X.; Guo, Z. Q.; Zhang, J.; Zhu, P.; Yao, S.; Zhu, M. Z. Ferritin nanoparticle-based SpyTag/SpyCatcher-enabled click vaccine for tumor immunotherapy. Nanomed. Nanotechnol. Biol. Med. 2019, 16, 69–78.
Rad-Malekshahi, M.; Fransen, M. F.; Krawczyk, M.; Mansourian, M.; Bourajjaj, M.; Chen, J.; Ossendorp, F.; Hennink, W. E.; Mastrobattista, E.; Amidi, M. Self-assembling peptide epitopes as novel platform for anticancer vaccination. Mol. Pharm. 2017, 14, 1482–1493.