AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development

Taiyu LiuLu LiCheng ChengBingfang HeTianyue Jiang( )
School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
Show Author Information

Graphical Abstract

This review summarizes recent advances in the applications of protein/peptide-based nanoassemblies for drug delivery and vaccine therapy.

Abstract

Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.

References

1

Hoonjan, M.; Sachdeva, G.; Chandra, S.; Kharkar, P. S.; Sahu, N.; Bhatt, P. Investigation of HSA as a biocompatible coating material for arsenic trioxide nanoparticles. Nanoscale 2018, 10, 8031–8041.

2

Krauss, I. R.; Picariello, A.; Vitiello, G.; De Santis, A.; Koutsioubas, A.; Houston, J. E.; Fragneto, G.; Paduano, L. Interaction with human serum proteins reveals biocompatibility of phosphocholine-functionalized spions and formation of albumin-decorated nanoparticles. Langmuir 2020, 36, 8777–8791.

3

Wang, L. R.; Lin, H. Y.; Chi, X. Q.; Sun, C. J.; Huang, J. Q.; Tang, X. X.; Chen, H. M.; Luo, X. J.; Yin, Z. Y.; Gao, J. H. A self-assembled biocompatible nanoplatform for multimodal MR/fluorescence imaging assisted photothermal therapy and prognosis analysis. Small 2018, 14, 1801612.

4

Pan, G. H.; Ni, J.; Wei, Y. F.; Yu, G. L.; Gentz, R.; Dixit, V. M. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997, 277, 815–818.

5

Tan, C. Y.; Ban, H.; Kim, Y. H.; Lee, S. K. The heat shock protein 27 (Hsp27) operates predominantly by blocking the mitochondrial-independent/extrinsic pathway of cellular apoptosis. Mol. Cells 2009, 27, 703.

6

Li, J. Y.; Paragas, N.; Ned, R. M.; Qiu, A. D.; Viltard, M.; Leete, T.; Drexler, I. R.; Chen, X.; Sanna-Cherchi, S.; Mohammed, F. et al. Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev. Cell 2009, 16, 35–46.

7

Liu, J. L.; Chen, B. X.; Zhao, B.; Luo, X. B.; Li, J. F.; Xie, Y. T.; Li, B. L.; Chen, H. Y.; Zhao, M. Y.; Yan, H. D. Effect of hirudin on arterialized venous flap survival in rabbits. Biomed. Pharmacother. 2021, 142, 111981.

8

Ki, M. R.; Kim, J. K.; Kim, S. H.; Nguyen, T. K. M.; Kim, K. H.; Pack, S. P. Compartment-restricted and rate-controlled dual drug delivery system using a biosilica-enveloped ferritin cage. J. Ind. Eng. Chem. 2020, 81, 367–374.

9

Murata, M.; Narahara, S.; Kawano, T.; Hamano, N.; Piao, J. S.; Kang, J. H.; Ohuchida, K.; Murakami, T.; Hashizume, M. Design and function of engineered protein nanocages as a drug delivery system for targeting pancreatic cancer cells via neuropilin-1. Mol. Pharm. 2015, 12, 1422–1430.

10

Reuter, L. J.; Shahbazi, M. A.; Mäkilä, E. M.; Salonen, J. J.; Saberianfar, R.; Menassa, R.; Santos, H. A.; Joensuu, J. J.; Ritala, A. Coating nanoparticles with plant-produced transferrin-hydrophobin fusion protein enhances their uptake in cancer cells. Bioconjug. Chem. 2017, 28, 1639–1648.

11

Lucon, J.; Abedin, M. J.; Uchida, M.; Liepold, L.; Jolley, C. C.; Young, M.; Douglas, T. A click chemistry based coordination polymer inside small heat shock protein. Chem. Commun. 2010, 46, 264–266.

12

Varpness, Z.; Suci, P. A.; Ensign, D.; Young, M. J.; Douglas, T. Photosensitizer efficiency in genetically modified protein cage architectures. Chem. Commun. 2009, 3726–3728.

13

Gillitzer, E.; Willits, D.; Young, M.; Douglas, T. Chemical modification of a viral cage for multivalent presentation. Chem. Commun. 2002, 2390–2391.

14

Ding, D.; Yang, C.; Lv, C.; Li, J.; Tan, W. H. Improving tumor accumulation of aptamers by prolonged blood circulation. Anal. Chem. 2020, 92, 4108–4114.

15

Brandt, M.; Cardinale, J.; Giammei, C.; Guarrochena, X.; Happl, B.; Jouini, N.; Mindt, T. L. Mini-review: Targeted radiopharmaceuticals incorporating reversible, low molecular weight albumin binders. Nucl. Med. Biol. 2019, 70, 46–52.

16

Chen, X.; Ling, X.; Zhao, L. L.; Xiong, F.; Hollett, G.; Kang, Y.; Barrett, A.; Wu, J. Biomimetic shells endow sub-50 nm nanoparticles with ultrahigh paclitaxel payloads for specific and robust chemotherapy. ACS. Appl. Mater. Interfaces 2018, 10, 33976–33985.

17

Wang, M. Y.; Zhang, L.; Cai, Y. F.; Yang, Y.; Qiu, L. P.; Shen, Y. T.; Jin, J.; Zhou, J.; Chen, J. H. Bioengineered human serum albumin fusion protein as target/enzyme/pH three-stage propulsive drug vehicle for tumor therapy. ACS Nano 2020, 14, 17405–17418.

18

Desai, N.; Trieu, V.; Yao, Z. W.; Louie, L.; Ci, S.; Yang, A.; Tao, C. L.; De, T.; Beals, B.; Dykes, D. et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res. 2006, 12, 1317–1324.

19

Wang, D. F.; Liang, N.; Kawashima, Y.; Cui, F. D.; Yan, P. F.; Sun, S. P. Biotin-modified bovine serum albumin nanoparticles as a potential drug delivery system for paclitaxel. J. Mater. Sci. 2019, 54, 8613–8626.

20

Das, R. P.; Singh, B. G.; Kunwar, A.; Ramani, M. V.; Subbaraju, G. V.; Hassan, P. A.; Priyadarsini, K. I. Tuning the binding, release and cytotoxicity of hydrophobic drug by bovine serum albumin nanoparticles: Influence of particle size. Colloids Surf. B Biointerfaces 2017, 158, 682–688.

21

Gong, T.; Tan, T. T.; Zhang, P.; Li, H. H.; Deng, C. F.; Huang, Y.; Gong, T.; Zhang, Z. R. Palmitic acid-modified bovine serum albumin nanoparticles target scavenger receptor-A on activated macrophages to treat rheumatoid arthritis. Biomaterials 2020, 258, 120296.

22

Nosrati, H.; Abbasi, R.; Charmi, J.; Rakhshbahar, A.; Aliakbarzadeh, F.; Danafar, H.; Davaran, S. Folic acid conjugated bovine serum albumin: An efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells. Int. J. Biol. Macromol. 2018, 117, 1125–1132.

23

Gaowa, A.; Horibe, T.; Kohno, M.; Sato, K.; Harada, H.; Hiraoka, M.; Tabata, Y.; Kawakami, K. Combination of hybrid peptide with biodegradable gelatin hydrogel for controlled release and enhancement of anti-tumor activity in vivo. J. Controlled Release 2014, 176, 1–7.

24

Chen, X. J.; Zou, J. F.; Zhang, K.; Zhu, J. J.; Zhang, Y.; Zhu, Z. H.; Zheng, H. Y.; Li, F. Z.; Piao, J. G. Photothermal/matrix metalloproteinase-2 dual-responsive gelatin nanoparticles for breast cancer treatment. Acta. Pharm. Sin. B 2021, 11, 271–282.

25

Zhou, H.; He, G.; Sun, Y. B.; Wang, J. G.; Wu, H. T.; Jin, P.; Zha, Z. Cryptobiosis-inspired assembly of “AND” logic gate platform for potential tumor-specific drug delivery. Acta Pharm. Sin. B 2021, 11, 534–543.

26

He, G.; Chen, S.; Xu, Y. J.; Miao, Z. H.; Ma, Y.; Qian, H. S.; Lu, Y.; Zha, Z. B. Charge reversal induced colloidal hydrogel acts as a multi-stimuli responsive drug delivery platform for synergistic cancer therapy. Mater. Horiz. 2019, 6, 711–716.

27

Cheng, W. Y.; Wang, B. L.; Zhang, C. Y.; Dong, Q. N.; Qian, J. J.; Zha, L.; Chen, W. D.; Hong, L. F. Preparation and preliminary pharmacokinetics study of GNA-loaded zein nanoparticles. J. Pharm. Pharmacol. 2019, 71, 1626–1634.

28

Bao, X. Y.; Qian, K.; Yao, P. Oral delivery of exenatide-loaded hybrid zein nanoparticles for stable blood glucose control and β-cell repair of type 2 diabetes mice. J. Nanobiotechnol. 2020, 18, 67.

29

Shinde, P.; Agraval, H.; Singh, A.; Yadav, U. C. S.; Kumar, U. Synthesis of luteolin loaded zein nanoparticles for targeted cancer therapy improving bioavailability and efficacy. J. Drug. Deliv. Sci. Technol. 2019, 52, 369–378.

30

Alqahtani, M. S.; Syed, R.; Alshehri, M. Size-dependent phagocytic uptake and immunogenicity of gliadin nanoparticles. Polymers 2020, 12, 2576.

31

Yang, Y. Y.; Zhang, M.; Liu, Z. P.; Wang, K.; Yu, D. G. Meletin sustained-release gliadin nanoparticles prepared via solvent surface modification on blending electrospraying. Appl. Surf. Sci. 2018, 434, 1040–1047.

32

Qian, X. P.; Ge, L.; Yuan, K. J.; Li, C.; Zhen, X.; Cai, W. B.; Cheng, R. S.; Jiang, X. Q. Targeting and microenvironment-improving of phenylboronic acid-decorated soy protein nanoparticles with different sizes to tumor. Theranostics 2019, 9, 7417–7430.

33

Farooq, M. A.; Aquib, M.; Ghayas, S.; Bushra, R.; Haleem Khan, D.; Parveen, A.; Wang, B. Whey protein: A functional and promising material for drug delivery systems recent developments and future prospects. Polym. Adv. Technol. 2019, 30, 2183–2191.

34

Castro, M. A. A.; Alric, I.; Brouillet, F.; Peydecastaing, J.; Fullana, S. G.; Durrieu, V. Spray-dried succinylated soy protein microparticles for oral ibuprofen delivery. AAPS PharmSciTech 2019, 20, 79.

35

Tang, J. H.; Zhou, J. P.; Chen, F. H.; Sun, T. T.; Kuang, W. J.; Feng, R. X. Synthesis, characterization and drug-loading capacity of novel amphiphilic amino acid copolymer. J. China Pharm. Univ. 2012, 43, 211–215.

36

Loureiro, A.; Nogueira, E.; Azoia, N. G.; Sárria, M. P.; Abreu, A. S.; Shimanovich, U.; Rollett, A.; Härmark, J.; Hebert, H.; Guebitz, G. et al. Size controlled protein nanoemulsions for active targeting of folate receptor positive cells. Colloids Surf. B Biointerfaces 2015, 135, 90–98.

37

Yang, P. P.; Zhang, K.; He, P. P.; Fan, Y.; Gao X. J.; Gao, X. F.; Chen, Z. M.; Hou, D. Y.; Li, Y.; Yi, Y. et al. A biomimetic platelet based on assembling peptides initiates artificial coagulation. Sci. Adv. 2020, 6, eaaz4107.

38

Bao, C. Y.; Yin, Y. H.; Zhang, Q. Synthesis and assembly of laccase-polymer giant amphiphiles by self-catalyzed CuAAC click chemistry. Biomacromolecules 2018, 19, 1539–1551.

39

Mohammad-Beigi, H.; Shojaosadati, S. A.; Morshedi, D.; Arpanaei, A.; Marvian, A. T. Preparation and in vitro characterization of gallic acid-loaded human serum albumin nanoparticles. J. Nanopart. Res. 2015, 17, 167.

40

Li, W.; Garringer, H. J.; Goodwin, C. B.; Richine, B.; Acton, A.; VanDuyn, N.; Muhoberac, B. B.; Irimia-Dominguez, J.; Chan, R. J.; Peacock, M. et al. Systemic and cerebral iron homeostasis in ferritin knock-out mice. PLoS One 2015, 10, e0117435.

41

Thompson, K.; Menzies, S.; Muckenthaler, M.; Torti, F. M.; Wood, T.; Torti, S. V.; Hentze, M. W.; Beard, J.; Connor, J. Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. J. Neurosci. Res. 2003, 71, 46–63.

42

Pieters, B. J. G. E.; Van Eldijk, M. B.; Nolte, R. J. M.; Mecinović, J. Natural supramolecular protein assemblies. Chem. Soc. Rev. 2016, 45, 24–39.

43

Carmona, F.; Poli, M.; Bertuzzi, M.; Gianoncelli, A.; Gangemi, F.; Arosio, P. Study of ferritin self-assembly and heteropolymer formation by the use of fluorescence resonance energy transfer (FRET) technology. Biochim. Biophys. Acta. Gen. Subj. 2017, 1861, 522–532.

44

Wege, C.; Koch, C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1591.

45

Fiedler, J. D.; Fishman, M. R.; Brown, S. D.; Lau, J.; Finn, M. G. Multifunctional enzyme packaging and catalysis in the Qβ protein nanoparticle. Biomacromolecules 2018, 19, 3945–3957.

46

Wang, J. C.; Liu, Y. C.; Chen, Y. M.; Zhang, T.; Wang, A. P.; Wei, Q.; Liu, D. M.; Wang, F. Y.; Zhang, G. P. Capsid assembly is regulated by amino acid residues asparagine 47 and 48 in the VP2 protein of porcine parvovirus. Vet. Microbiol. 2021, 253, 108974.

47

Harrison, P. M.; Arosio, P. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta Bioenerg. 1996, 1275, 161–203.

48

Arosio, P.; Elia, L.; Poli, M. Ferritin, cellular iron storage and regulation. IUBMB Life 2017, 69, 414–422.

49

Uchida, M.; Kang, S.; Reichhardt, C.; Harlen, K.; Douglas, T. The ferritin superfamily: Supramolecular templates for materials synthesis. Biochim. Biophys. Acta. Gen. Subj. 2010, 1800, 834–845.

50

Harrison, P. M.; Fischbach, F. A.; Hoy, T. G.; Haggis, G. H. Ferric oxyhydroxide core of ferritin. Nature 1967, 216, 1188–1190.

51

Bertini, I.; Lalli, D.; Mangani, S.; Pozzi, C.; Rosa, C.; Theil, E. C.; Turano, P. Structural insights into the ferroxidase site of ferritins from higher eukaryotes. J. Am. Chem. Soc. 2012, 134, 6169–6176.

52

Arosio, P.; Ingrassia, R.; Cavadini, P. Ferritins: A family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta. Gen. Subj. 2009, 1790, 589–599.

53

Torti, F. M.; Torti, S. V. Regulation of ferritin genes and protein. Blood 2002, 99, 3505–3516.

54

Damiani, V.; Falvo, E.; Fracasso, G.; Federici, L.; Pitea, M.; De Laurenzi, V.; Sala, G.; Ceci, P. Therapeutic efficacy of the novel stimuli-sensitive nano-ferritins containing doxorubicin in a head and neck cancer model. Int. J. Mol. Sci. 2017, 18, 1555.

55

Fracasso, G.; Falvo, E.; Colotti, G.; Fazi, F.; Ingegnere, T.; Amalfitano, A.; Doglietto, G. B.; Alfieri, S.; Boffi, A.; Morea, V. et al. Selective delivery of doxorubicin by novel stimuli-sensitive nano-ferritins overcomes tumor refractoriness. J. Controlled Release 2016, 239, 10–18.

56

Falvo, E.; Tremante, E.; Arcovito, A.; Papi, M.; Elad, N.; Boffi, A.; Morea, V.; Conti, G.; Toffoli, G.; Fracasso, G. et al. Improved doxorubicin encapsulation and pharmacokinetics of ferritin-fusion protein nanocarriers bearing proline, serine, and alanine elements. Biomacromolecules 2016, 17, 514–522.

57

Huang, C.; Chu, C. C.; Wang, X. Y.; Lin, H. R.; Wang, J. Q.; Zeng, Y.; Zhu, W. Z.; Wang, Y. X. J.; Liu, G. Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy. Biomater. Sci. 2017, 5, 1512–1516.

58

Pandolfi, L.; Bellini, M.; Vanna, R.; Morasso, C.; Zago, A.; Carcano, S.; Avvakumova, S.; Bertolini, J. A.; Rizzuto, M. A.; Colombo, M. et al. H-ferritin enriches the curcumin uptake and improves the therapeutic efficacy in triple negative breast cancer cells. Biomacromolecules 2017, 18, 3318–3330.

59

Falvo, E.; Malagrinò, F.; Arcovito, A.; Fazi, F.; Colotti, G.; Tremante, E.; Di Micco, P.; Braca, A.; Opri, R.; Giuffrè, A. et al. The presence of glutamate residues on the PAS sequence of the stimuli-sensitive nano-ferritin improves in vivo biodistribution and mitoxantrone encapsulation homogeneity. J. Controlled Release 2018, 275, 177–185.

60

Ryser, H.; Caulfield, J. B.; Aub, J. C. Studies on protein uptake by isolated tumor cells. I. Electron microscopic evidence of ferritin uptake by ehrlich ascites tumor cells. J. Cell Biol. 1962, 14, 255–268.

61

Caulfield, J. B. Studies on ferritin uptake by isolated tumor cells. Lab. Invest. 1963, 12, 1018–1025.

62

Easty, G. C.; Yarnell, M. M.; Andrews, R. D. The uptake of proteins by normal and tumour cells in vitro. Br. J. Cancer 1965, 18, 354–367.

63

Li, L.; Fang, C. J.; Ryan, J. C.; Niemi, E. C.; Lebrón, J. A.; Björkman, P. J.; Arase, H.; Torti, F. M.; Torti, S. V.; Nakamura, M. C. et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc. Natl. Acad. Sci. USA 2010, 107, 3505–3510.

64

Kawabata, H. Transferrin and transferrin receptors update. Free Radic. Biol. Med. 2019, 133, 46–54.

65

Fan, K. L.; Cao, C. Q.; Pan, Y. X.; Lu, D.; Yang, D. L.; Feng, J.; Song, L. N.; Liang, M. M.; Yan, X. Y. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012, 7, 765.

66

Wang, B.; Tang, M.; Yuan, Z.; Li, Z.; Hu, B.; Bai, X.; Chu, J.; Xu, X.; Zhang, X. Targeted delivery of a sting agonist to brain tumors using bioengineered protein nanoparticles for enhanced immunotherapy. Bioact. Mater. 2022, 16, 232–248.

67

Lajoie, J. M.; Shusta, E. V. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 613–631.

68

Fan, K. L.; Jia, X. H.; Zhou, M.; Wang, K.; Conde, J.; He, J. Y.; Tian, J.; Yan, X. Y. Ferritin nanocarrier traverses the blood brain barrier and kills glioma. ACS Nano 2018, 12, 4105–4115.

69

Richter, K.; Haslbeck, M.; Buchner, J. The heat shock response: Life on the verge of death. Mol. Cell. 2010, 40, 253–266.

70

Guo, M.; Liu, J. H.; Ma, X.; Luo, D. X.; Gong, Z. H.; Lu, M. H. The plant heat stress transcription factors (HSFs): Structure, regulation, and function in response to abiotic stresses. Front. Plant Sci. 2016, 7, 114.

71

Shende, P.; Bhandarkar, S.; Prabhakar, B. Heat shock proteins and their protective roles in stem cell biology. Stem Cell Rev. Rep. 2019, 15, 637–651.

72

Smith, D. F.; Whitesell, L.; Katsanis, E. Molecular chaperones: Biology and prospects for pharmacological intervention. Pharmacol. Rev. 1998, 50, 493–514.

73

Tsukahara, F.; Yoshioka, T.; Muraki, T. Molecular and functional characterization of HSC54, a novel variant of human heat-shock cognate protein 70. Mol. Pharmacol. 2000, 58, 1257–1263.

74

Stromer, T.; Fischer, E.; Richter, K.; Haslbeck, M.; Buchner, J. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: The N-terminal domain is important for oligomer assembly and the binding of unfolding proteins. J. Biol. Chem. 2004, 279, 11222–11228.

75

Kim, K. K.; Kim, R.; Kim, S. H. Crystal structure of a small heat-shock protein. Nature 1998, 394, 595–599.

76

Kim, R.; Kim, K. K.; Yokota, H.; Kim, S. H. Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl. Acad. Sci. USA 1998, 95, 9129–9133.

77

Kim, K. K.; Yokota, H.; Santoso, S.; Lerner, D.; Kim, R.; Kim, S. H. Purification, crystallization, and preliminary X-ray crystallographic data analysis of small heat shock protein homolog from Methanococcus jannaschii, a hyperthermophile. J. Struct. Biol. 1998, 121, 76–80.

78

Flenniken, M. L.; Willits, D. A.; Brumfield, S.; Young, M. J.; Douglas, T. The small heat shock protein cage from Methanococcus jannaschii is a versatile nanoscale platform for genetic and chemical modification. Nano Lett. 2003, 3, 1573–1576.

79

Bova, M. P.; Ding, L. L.; Horwitz, J.; Fung, B. K. K. Subunit exchange of αA-crystallin. J. Biol. Chem. 1997, 272, 29511–29517.

80

Choi, S. H.; Kwon, I. C.; Hwang, K. Y.; Kim, I. S.; Ahn, H. J. Small heat shock protein as a multifunctional scaffold: Integrated tumor targeting and caspase imaging within a single cage. Biomacromolecules 2011, 12, 3099–3106.

81

Flenniken, M. L.; Liepold, L. O.; Crowley, B. E.; Willits, D. A.; Young, M. J.; Douglas, T. Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture. Chem. Commun. 2005, 447–449.

82

Kawano, T.; Murata, M.; Kang, J. H.; Piao, J. S.; Narahara, S.; Hyodo, F.; Hamano, N.; Guo, J.; Oguri, S.; Ohuchida, K. et al. Ultrasensitive MRI detection of spontaneous pancreatic tumors with nanocage-based targeted contrast agent. Biomaterials 2018, 152, 37–46.

83

Suprenant, K. A. Vault ribonucleoprotein particles: Sarcophagi, gondolas, or safety deposit boxes. Biochemistry 2002, 41, 14447–14454.

84

Van Zon, A.; Mossink, M. H.; Scheper, R. J.; Sonneveld, P.; Wiemer, E. A. C. The vault complex. Cell. Mol. Life Sci. 2003, 60, 1828–1837.

85

Kedersha, N. L.; Rome, L. H. Isolation and characterization of a novel ribonucleoprotein particle: Large structures contain a single species of small RNA. J. Cell Biol. 1986, 103, 699–709.

86

Ding, K.; Zhang, X.; Mrazek, J.; Kickhoefer, V. A.; Lai, M.; Ng, H. L.; Yang, O. O.; Rome, L. H.; Zhou, Z. H. Solution structures of engineered vault particles. Structure 2018, 26, 619–626.e3.

87

Stephen, A. G.; Raval-Fernandes, S.; Huynh, T.; Torres, M.; Kickhoefer, V. A.; Rome, L. H. Assembly of vault-like particles in insect cells expressing only the major vault protein. J. Biol. Chem. 2001, 276, 23217–23220.

88

Mikyas, Y.; Makabi, M.; Raval-Fernandes, S.; Harrington, L.; Kickhoefer, V. A.; Rome, L. H.; Stewart, P. L. Cryoelectron microscopy imaging of recombinant and tissue derived vaults: Localization of the MVP N termini and VPARP. J. Mol. Biol. 2004, 344, 91–105.

89

Kickhoefer, V. A.; Liu, Y. E.; Kong, L. B.; Snow, B. E.; Stewart, P. L.; Harrington, L.; Rome, L. H. The telomerase/vault-associated protein TEP1 is required for vault RNA stability and its association with the vault particle. J. Cell Biol. 2001, 152, 157–164.

90

Frascotti, G.; Galbiati, E.; Mazzucchelli, M.; Pozzi, M.; Salvioni, L.; Vertemara, J.; Tortora, P. The vault nanoparticle: A gigantic ribonucleoprotein assembly involved in diverse physiological and pathological phenomena and an ideal nanovector for drug delivery and therapy. Cancers 2021, 13, 707.

91

Voth, B. L.; Pelargos, P. E.; Barnette, N. E.; Bhatt, N. S.; Chen, C. H. J.; Lagman, C.; Chung, L. K.; Nguyen, T.; Sheppard, J. P.; Romiyo, P. et al. Intratumor injection of CCL21-coupled vault nanoparticles is associated with reduction in tumor volume in an in vivo model of glioma. J. Neurooncol. 2020, 147, 599–605.

92

Goldsmith, L. E.; Yu, M.; Rome, L. H.; Monbouquette, H. G. Vault nanocapsule dissociation into halves triggered at low pH. Biochemistry 2007, 46, 2865–2875.

93

Esfandiary, R.; Kickhoefer, V. A.; Rome, L. H.; Joshi, S. B.; Middaugh, C. R. Structural stability of vault particles. J. Pharm. Sci. 2009, 98, 1376–1386.

94

Barth, H.; Ulsenheimer, A.; Pape, G. R.; Diepolder, H. M.; Hoffmann, M.; Neumann-Haefelin, C.; Thimme, R.; Henneke, P.; Klein, R.; Paranhos-Baccala, G. et al. Uptake and presentation of hepatitis C virus-like particles by human dendritic cells. Blood 2005, 105, 3605–3614.

95

Crisci, E.; Bárcena, J.; Montoya, M. Virus-like particles: The new frontier of vaccines for animal viral infections. Vet. Immunol. Immunopathol. 2012, 148, 211–225.

96

Lin, T. W.; Chen, Z. G.; Usha, R.; Stauffacher, C. V.; Dai, J. B.; Schmidt, T.; Johnson, J. E. The refined crystal structure of cowpea mosaic virus at 2. 8 Å resolution. Virology 1999, 265, 20–34.

97

Speir, J. A.; Bothner, B.; Qu, C. X.; Willits, D. A.; Young, M. J.; Johnson, J. E. Enhanced local symmetry interactions globally stabilize a mutant virus capsid that maintains infectivity and capsid dynamics. J. Virol. 2006, 80, 3582–3591.

98

Cui, Z. C.; Gorzelnik, K. V.; Chang, J. Y.; Langlais, C.; Jakana, J.; Young, R.; Zhang, J. J. Structures of Qβ virions, virus-like particles, and the Qβ-murA complex reveal internal coat proteins and the mechanism of host lysis. Proc. Natl. Acad. Sci. USA 2017, 114, 11697–11702.

99

Franzen, S.; Lommel, S. A. Targeting cancer with ‘smart bombs’: Equipping plant virus nanoparticles for a ‘seek and destroy’ mission. Nanomedicine 2009, 4, 575–588.

100

Ren, Y. P.; Wong, S. M.; Lim, L. Y. Application of plant viruses as nano drug delivery systems. Pharm. Res. 2010, 27, 2509–2513.

101

Chung, Y. H.; Cai, H.; Steinmetz, N. F. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv. Drug Deliv. Rev. 2020, 156, 214–235.

102

Liu, J. L.; Dixit, A. B.; Robertson, K. L.; Qiao, E.; Black, L. W. Viral nanoparticle-encapsidated enzyme and restructured DNA for cell delivery and gene expression. Proc. Natl. Acad. Sci. USA 2014, 111, 13319–13324.

103

Lam, P.; Steinmetz, N. F. Delivery of siRNA therapeutics using cowpea chlorotic mottle virus-like particles. Biomater. Sci. 2019, 7, 3138–3142.

104

Frietze, K. M.; Peabody, D. S.; Chackerian, B. Engineering virus-like particles as vaccine platforms. Curr. Opin. Virol. 2016, 18, 44–49.

105

Balke, I.; Zeltins, A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv. Drug Deliv. Rev. 2019, 145, 119–129.

106

Neek, M.; Kim, T. I.; Wang, S. W. Protein-based nanoparticles in cancer vaccine development. Nanomed. Nanotechnol. Biol. Med. 2019, 15, 164–174.

107

Zepeda-Cervantes, J.; Ramírez-Jarquín, J. O.; Vaca, L. Interaction between virus-like particles (VLPs) and pattern recognition receptors (PRRs) from dendritic cells (DCs): Toward better engineering of VLPs. Front. Immunol. 2020, 11, 1100.

108

Shukla, S.; Wang, C.; Beiss, V.; Cai, H.; Washington II, T.; Murray, A. A.; Gong, X. J.; Zhao, Z. C.; Masarapu, H.; Zlotnick, A. et al. The unique potency of cowpea mosaic virus (CPMV) in situ cancer vaccine. Biomater. Sci. 2020, 8, 5489–5503.

109

Linder, M. B.; Szilvay, G. R.; Nakari-Setälä, T.; Penttilä, M. E. Hydrophobins: The protein-amphiphiles of filamentous fungi. FEMS Microbiol. Rev. 2005, 29, 877–896.

110

Wessels, J. G. H. Hydrophobins: Proteins that change the nature of the fungal surface. Adv. Microb. Physiol. 1996, 38, 1–45.

111

Wösten, H. A. B.; Scholtmeijer, K. Applications of hydrophobins: Current state and perspectives. Appl. Microbiol. Biotechnol. 2015, 99, 1587–1597.

112

Wessels, J. G. H. Developmental regulation of fungal cell wall formation. Annu. Rev. Phytopathol. 1994, 32, 413–437.

113

Kwan, A. H.; Winefield, R. D.; Sunde, M.; Matthews, J. M.; Haverkamp, R. G.; Templeton, M. D.; Mackay, J. P. Structural basis for rodlet assembly in fungal hydrophobins. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 3621–3626.

114

Kallio, J. M.; Linder, M. B.; Rouvinen, J. Crystal structures of hydrophobin HFBII in the presence of detergent implicate the formation of fibrils and monolayer films. J. Biol. Chem. 2007, 282, 28733–28739.

115

Fang, G. H.; Tang, B.; Liu, Z. T.; Gou, J. X.; Zhang, Y.; Xu, H.; Tang, X. Novel hydrophobin-coated docetaxel nanoparticles for intravenous delivery: In vitro characteristics and in vivo performance. Eur. J. Pharm. Sci. 2014, 60, 1–9.

116

Maiolo, D.; Pigliacelli, C.; Moreno, P. S.; Violatto, M. B.; Talamini, L.; Tirotta, I.; Piccirillo, R.; Zucchetti, M.; Morosi, L.; Frapolli, R. et al. Bioreducible hydrophobin-stabilized supraparticles for selective intracellular release. ACS Nano 2017, 11, 9413–9423.

117

Holt, C.; Carver, J. A.; Ecroyd, H.; Thorn, D. C. Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods. J. Dairy Sci. 2013, 96, 6127–6146.

118

Artym, J.; Zimecki, M. Milk-derived proteins and peptides in clinical trials. Postepy Hig. Med. Dosw. 2013, 67, 800–816.

119

Elzoghby, A. O.; Abo El-Fotoh, W. S.; Elgindy, N. A. Casein-based formulations as promising controlled release drug delivery systems. J. Controlled Release 2011, 153, 206–216.

120

Horne, D. S. Casein structure, self-assembly and gelation. Curr. Opin. Colloid Interface Sci. 2002, 7, 456–461.

121

Huppertz, T.; De Kruif, C. G. Structure and stability of nanogel particles prepared by internal cross-linking of casein micelles. Int. Dairy J. 2008, 18, 556–565.

122

Kumosinski, T. F.; Brown, E. M.; Farrell, H. M. Jr. Three-dimensional molecular modeling of bovine caseins: An energy-minimized β-casein structure. J. Dairy Sci. 1993, 76, 931–945.

123

Tai, M. S.; Kegeles, G. A micelle model for the sedimentation behavior of bovine β-casein. Biophys. Chem. 1984, 20, 81–87.

124

Portnaya, I.; Ben-Shoshan, E.; Cogan, U.; Khalfin, R.; Fass, D.; Ramon, O.; Danino, D. Self-assembly of bovine β-casein below the isoelectric pH. J. Agric. Food Chem. 2008, 56, 2192–2198.

125

Javor, G. T.; Sood, S. M.; Chang, P.; Slattery, C. W. Interactions of triply phosphorylated human β-casein: Fluorescence spectroscopy and light-scattering studies of conformation and self-association. Arch. Biochem. Biophys. 1991, 289, 39–46.

126

Livney, Y. D. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 2010, 15, 73–83.

127

Trejo, R.; Dokland, T.; Jurat-Fuentes, J.; Harte, F. Cryo-transmission electron tomography of native casein micelles from bovine milk. J. Dairy Sci. 2011, 94, 5770–5775.

128

Pasquali-Ronchetti, I.; Baccarani-Contri, M. Elastic fiber during development and aging. Microsc. Res. Tech. 1997, 38, 428–435.

129

Martyn, C.; Greenwald, S. A hypothesis about a mechanism for the programming of blood pressure and vascular disease in early life. Clin. Exp. Pharmacol. Physiol. 2001, 28, 948–951.

130

Faury, G. Function–structure relationship of elastic arteries in evolution: From microfibrils to elastin and elastic fibres. Pathol. Biol. 2001, 49, 310–325.

131

Tatham, A. S.; Shewry, P. R. Elastomeric proteins: Biological roles, structures and mechanisms. Trends Biochem. Sci. 2000, 25, 567–571.

132

Yeboah, A.; Cohen, R. I.; Rabolli, C.; Yarmush, M. L.; Berthiaume, F. Elastin-like polypeptides: A strategic fusion partner for biologics. Biotechnol. Bioeng. 2016, 113, 1617–1627.

133

Straley, K. S.; Heilshorn, S. C. Independent tuning of multiple biomaterial properties using protein engineering. Soft Matter 2009, 5, 114–124.

134

Catherine, C.; Oh, S. J.; Lee, K. H.; Min, S. E.; Won, J. I.; Yun, H.; Kim, D. M. Engineering thermal properties of elastin-like polypeptides by incorporation of unnatural amino acids in a cell-free protein synthesis system. Biotechnol. Bioprocess Eng. 2015, 20, 417–422.

135

Bataille, L.; Dieryck, W.; Hocquellet, A.; Cabanne, C.; Bathany, K.; Lecommandoux, S.; Garbay, B.; Garanger, E. Recombinant production and purification of short hydrophobic elastin-like polypeptides with low transition temperatures. Protein Exp. Purif. 2016, 121, 81–87.

136

Urry, D. W.; Trapane, T. L.; Prasad, K. U. Phase-structure transitions of the elastin polypentapeptide–water system within the framework of composition–temperature studies. Biopolymers 1985, 24, 2345–2356.

137

Urry, D. W. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 1997, 101, 11007–11028.

138

Dhandhukia, J. P.; Shi, P.; Peddi, S.; Li, Z.; Aluri, S.; Ju, Y. P.; Brill, D.; Wang, W.; Janib, S. M.; Lin, Y. A. et al. Bifunctional elastin-like polypeptide nanoparticles bind rapamycin and integrins and suppress tumor growth in vivo. Bioconjug. Chem. 2017, 28, 2715–2728.

139

Utterström, J.; Naeimipour, S.; Selegård, R.; Aili, D. Coiled coil-based therapeutics and drug delivery systems. Adv. Drug Deliv. Rev. 2021, 170, 26–43.

140

Liu, J.; Zheng, Q.; Deng, Y. Q.; Cheng, C. S.; Kallenbach, N. R.; Lu, M. A seven-helix coiled coil. Proc. Natl. Acad. Sci. USA 2006, 103, 15457–15462.

141
Lupas, A. N.; Bassler, J.; Dunin-Horkawicz, S. The structure and topology of α-helical coiled coils. In Fibrous Proteins: Structures and Mechanisms. Parry, D. A. D.; Squire, J. M. , Eds.; Springer: Cham, 2017; pp 95–129.
142

Apostolovic, B.; Klok, H. A. pH-sensitivity of the E3/K3 heterodimeric coiled coil. Biomacromolecules 2008, 9, 3173–3180.

143

Fletcher, J. M.; Harniman, R. L.; Barnes, F. R. H.; Boyle, A. L.; Collins, A.; Mantell, J.; Sharp, T. H.; Antognozzi, M.; Booth, P. J.; Linden, N. et al. Self-assembling cages from coiled-coil peptide modules. Science 2013, 340, 595–599.

144

Ljubetič, A.; Lapenta, F.; Gradišar, H.; Drobnak, I.; Aupič, J.; Strmšek, Ž.; Lainšček, D.; Hafner-Bratkovič, I.; Majerle, A.; Krivec, N. et al. Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nat. Biotechnol. 2017, 35, 1094–1101.

145

Raman, S.; Machaidze, G.; Lustig, A.; Aebi, U.; Burkhard, P. Structure-based design of peptides that self-assemble into regular polyhedral nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2006, 2, 95–102.

146

Beck, K.; Gambee, J. E.; Kamawal, A.; Bächinger, H. P. A single amino acid can switch the oligomerization state of the α-helical coiled-coil domain of cartilage matrix protein. EMBO J. 1997, 16, 3767–3777.

147

Dames, S. A.; Kammerer, R. A.; Wiltscheck, R.; Engel, J.; Alexandrescu, A. T. NMR structure of a parallel homotrimeric coiled coil. Nat. Struct. Biol. 1998, 5, 687–691.

148

Klatt, A. R.; Becker, A. K. A.; Neacsu, C. D.; Paulsson, M.; Wagener, R. The matrilins: Modulators of extracellular matrix assembly. Int. J. Biochem. Cell Biol. 2011, 43, 320–330.

149

Wiltscheck, R.; Dames, S. A.; Alexandrescu, A. T.; Kammerer, R. A.; Schulthess, T.; Blommers, M. J. J.; Engel, J. Heteronuclear NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced forms. Protein Sci. 1997, 6, 1734–1745.

150

Eriksson, M.; Hassan, S.; Larsson, R.; Linder, S.; Ramqvist, T.; Lövborg, H.; Vikinge, T.; Figgemeier, E.; Müller, J.; Stetefeld, J. et al. Utilization of a right-handed coiled-coil protein from archaebacterium staphylothermus marinus as a carrier for cisplatin. Anticancer Res. 2009, 29, 11–18.

151

Fan, J. Q.; Fan, Y.; Wei, Z. J.; Li, Y. J.; Li, X. D.; Wang, L.; Wang, H. Transformable peptide nanoparticles inhibit the migration of N-cadherin overexpressed cancer cells. Chin. Chem. Lett. 2020, 31, 1787–1791.

152

Zhou, X. Y.; Su, X. K.; Zhou, C. C. Preparation of diblock amphiphilic polypeptide nanoparticles for medical applications. Eur. Polym. J. 2018, 100, 132–136.

153

Choi, H.; Liu, T.; Nath, K.; Zhou, R.; Chen, I. W. Peptide nanoparticle with pH-sensing cargo solubility enhances cancer drug efficiency. Nano Today 2017, 13, 15–22.

154

Sigg, S. J.; Postupalenko, V.; Duskey, J. T.; Palivan, C. G.; Meier, W. Stimuli-responsive codelivery of oligonucleotides and drugs by self-assembled peptide nanoparticles. Biomacromolecules 2016, 17, 935–945.

155

Gong, Z. Y.; Lao, J.; Gao, F.; Lin, W. P.; Yu, T.; Zhou, B. L.; Dong, J. H.; Liu, H.; Bai, J. K. pH-triggered geometrical shape switching of a cationic peptide nanoparticle for cellular uptake and drug delivery. Colloids Surf. B Biointerfaces 2020, 188, 110811.

156

Gong, Z. Y.; Liu, X. Y.; Zhou, B. L.; Wang, G. H.; Guan, X. W.; Xu, Y.; Zhang, J. J.; Hong, Z. X.; Cao, J. J.; Sun, X. R. et al. Tumor acidic microenvironment-induced drug release of RGD peptide nanoparticles for cellular uptake and cancer therapy. Colloids Surf. B Biointerfaces 2021, 202, 111673.

157

Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011, 6, 815–823.

158

Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K. K.; Kamal, M. A.; Garg, N.; Ruokolainen, J.; Das, B. C.; Kumar, D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol. 2021, 69, 166–177.

159

Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.

160

Hoshyar, N.; Gray, S.; Han, H. B.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11, 673–692.

161

Li, H. L.; Li, J. M.; He, X. Y.; Zhang, B.; Liu, C. X.; Li, Q. F.; Zhu, Y.; Huang, W. L.; Zhang, W.; Qian, H. et al. Histology and antitumor activity study of PTX-loaded micelle, a fluorescent drug delivery system prepared by PEG-TPP. Chin. Chem. Lett. 2019, 30, 1083–1088.

162

Huang, K. Z.; Gao, M. Y.; Fan, L.; Lai, Y. Y.; Fan, H. W.; Hua, Z. Z. IR820 covalently linked with self-assembled polypeptide for photothermal therapy applications in cancer. Biomater. Sci. 2018, 6, 2925–2931.

163

Huang, X.; Yin, Y. L.; Wu, M.; Zan, W.; Yang, Q. LyP-1 peptide-functionalized gold nanoprisms for SERRS imaging and tumor growth suppressing by PTT induced-hyperthermia. Chin. Chem. Lett. 2019, 30, 1335–1340.

164

Wen, S. F.; Zhang, K.; Li, Y.; Fan, J. Q.; Chen, Z. M.; Zhang, J. P.; Wang, H.; Wang, L. A self-assembling peptide targeting VEGF receptors to inhibit angiogenesis. Chin. Chem. Lett. 2020, 31, 3153–3157.

165

Peng, J. F.; Wang, R. R.; Sun, W. R.; Huang, M. H.; Wang, R.; Li, Y. J.; Wang, P. Y.; Sun, G. B.; Xie, S. Y. Delivery of miR-320a-3p by gold nanoparticles combined with photothermal therapy for directly targeting Sp1 in lung cancer. Biomater. Sci. 2021, 9, 6528–6541.

166

Xiao, Y. J.; Zhang, Q.; Wang, Y. Y.; Wang, B.; Sun, F. N.; Han, Z. Y.; Feng, Y. Q.; Yang, H. T.; Meng, S. X.; Wang, Z. F. Dual-functional protein for one-step production of a soluble and targeted fluorescent dye. Theranostics 2018, 8, 3111–3125.

167

Fan, R. R.; Mei, L.; Gao, X.; Wang, Y. L.; Xiang, M. L.; Zheng, Y.; Tong, A. P.; Zhang, X. N.; Han, B.; Zhou, L. X. et al. Self-assembled bifunctional peptide as effective drug delivery vector with powerful antitumor activity. Adv. Sci. 2017, 4, 1600285.

168

Pastorino, F.; Brignole, C.; Marimpietri, D.; Cilli, M.; Gambini, C.; Ribatti, D.; Longhi, R.; Allen, T. M.; Corti, A.; Ponzoni, M. Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res. 2003, 63, 7400–7409.

169

Garde, S. V.; Forté, A. J.; Ge, M.; Lepekhin, E. A.; Panchal, C. J.; Rabbani, S. A.; Wu, J. J. Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects. Anti-Cancer Drugs 2007, 18, 1189–1200.

170

Negussie, A. H.; Miller, J. L.; Reddy, G.; Drake, S. K.; Wood, B. J.; Dreher, M. R. Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J. Controlled Release 2010, 143, 265–273.

171

Sudimack, J.; Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 2000, 41, 147–162.

172

Lu, Y. J.; Low, P. S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev. 2012, 64, 342–352.

173

Thong, Q. X.; Biabanikhankahdani, R.; Ho, K. L.; Alitheen, N. B.; Tan, W. S. Thermally-responsive virus-like particle for targeted delivery of cancer drug. Sci. Rep. 2019, 9, 3945.

174

Chen, H. M.; Qin, Z. N.; Zhao, J. M.; He, Y.; Ren, E.; Zhu, Y.; Liu, G.; Mao, C. B.; Zheng, L. Cartilage-targeting and dual MMP-13/pH responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials 2019, 225, 119520.

175

Högemann-Savellano, D.; Bos, E.; Blondet, C.; Sato, F.; Abe, T.; Josephson, L.; Weissleder, R.; Gaudet, J.; Sgroi, D.; Peters, P. J. et al. The transferrin receptor: A potential molecular imaging marker for human cancer. Neoplasia 2003, 5, 495–506.

176

Mendes-Jorge, L.; Ramos, D.; Valença, A.; López-Luppo, M.; Pires, V. M. R.; Catita, J.; Nacher, V.; Navarro, M.; Carretero, A.; Rodriguez-Baeza, A. et al. L-ferritin binding to scara5: A new iron traffic pathway potentially implicated in retinopathy. PLoS One 2014, 9, e106974.

177

Dong, Y. X.; Ma, Y. M.; Li, X.; Wang, F.; Zhang, Y. ERK-peptide-inhibitor-modified ferritin enhanced the therapeutic effects of paclitaxel in cancer cells and spheroids. Mol. Pharm. 2021, 18, 3365–3377.

178

Owens III, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93–102.

179

Singh, A.; Xu, J.; Mattheolabakis, G.; Amiji, M. EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 589–600.

180

Hu, H.; Steinmetz, N. F. Doxorubicin-loaded physalis mottle virus particles function as a pH-responsive prodrug enabling cancer therapy. Biotechnol. J. 2020, 15, 2000077.

181

Wang, C. Y.; Zhang, C.; Li, Z. L.; Yin, S.; Wang, Q.; Guo, F. X.; Zhang, Y.; Yu, R.; Liu, Y. D.; Su, Z. G. Extending half life of H-ferritin nanoparticle by fusing albumin binding domain for doxorubicin encapsulation. Biomacromolecules 2018, 19, 773–781.

182

Jin, P. P.; Sha, R.; Zhang, Y. J.; Liu, L.; Bian, Y. P.; Qian, J.; Qian, J. Y.; Lin, J.; Ishimwe, N.; Hu, Y. et al. Blood circulation-prolonging peptides for engineered nanoparticles identified via phage display. Nano Lett. 2019, 19, 1467–1478.

183

Chen, Y. X.; Wei, C. X.; Lyu, Y. Q.; Chen, H. Z.; Jiang, G.; Gao, X. L. Biomimetic drug-delivery systems for the management of brain diseases. Biomater. Sci. 2020, 8, 1073–1088.

184

Zhang, H. Y.; Van Os, W. L.; Tian, X. B.; Zu, G. Y.; Ribovski, L.; Bron, R.; Bussmann, J.; Kros, A.; Liu, Y.; Zuhorn, I. S. Development of curcumin-loaded zein nanoparticles for transport across the blood-brain barrier and inhibition of glioblastoma cell growth. Biomater. Sci. 2021, 9, 7092–7103.

185

Wen, L. J.; Peng, Y.; Wang, K.; Huang, Z. H.; He, S. Y.; Xiong, R. W.; Wu, L. P.; Zhang, F. T.; Hu, F. Q. Regulation of pathological BBB restoration via nanostructured ROS-responsive glycolipid-like copolymer entrapping siVEGF for glioblastoma targeted therapeutics. Nano Res. 2022, 15, 1455–1465.

186

Li, Y. R.; Zhang, X. J.; Qi, Z. F.; Guo, X. L.; Liu, X. P.; Shi, W. J.; Liu, Y.; Du, L. B. The enhanced protective effects of salvianic acid A: A functionalized nanoparticles against ischemic stroke through increasing the permeability of the blood-brain barrier. Nano Res. 2020, 13, 2791–2802.

187

Pang, H. H.; Huang, C. Y.; Chou, Y. W.; Lin, C. J.; Zhou, Z. L.; Shiue, Y. L.; Wei, K. C.; Yang, H. W. Bioengineering fluorescent virus-like particle/RNAi nanocomplexes act synergistically with temozolomide to eradicate brain tumors. Nanoscale 2019, 11, 8102–8109.

188

Liu, W.; Lin, Q.; Fu, Y.; Huang, S. Q.; Guo, C. Q.; Li, L.; Wang, L. L.; Zhang, Z. R.; Zhang, L. Target delivering paclitaxel by ferritin heavy chain nanocages for glioma treatment. J. Controlled Release 2020, 323, 191–202.

189

Huang, C. W.; Chuang, C. P.; Chen, Y. J.; Wang, H. Y.; Lin, J. J.; Huang, C. Y.; Wei, K. C.; Huang, F. T. Integrin α2β1-targeting ferritin nanocarrier traverses the blood-brain barrier for effective glioma chemotherapy. J. Nanobiotechnol. 2021, 19, 180.

190

Zhao, S.; Duan, H. X.; Yang, Y. L.; Yan, X. Y.; Fan, K. L. Fenozyme protects the integrity of the blood-brain barrier against experimental cerebral malaria. Nano Lett. 2019, 19, 8887–8895.

191

Chen, Z. Y.; Liao, T.; Wan, L. H.; Kuang, Y.; Liu, C.; Duan, J. L.; Xu, X. Y.; Xu, Z. Q.; Jiang, B. B.; Li, C. Dual-stimuli responsive near-infrared emissive carbon dots/hollow mesoporous silica-based integrated theranostics platform for real-time visualized drug delivery. Nano Res. 2021, 14, 4264–4273.

192

Li, H. P.; Zhou, Z. W.; Zhang, F. R.; Guo, Y. X.; Yang, X.; Jiang, H. L.; Tan, F.; Oupicky, D.; Sun, M. J. A networked swellable dextrin nanogels loading Bcl2 siRNA for melanoma tumor therapy. Nano Res. 2018, 11, 4627–4642.

193

Yao, H. C.; Zhao, W. W.; Zhang, S. G.; Guo, X. F.; Li, Y.; Du, B. Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J. Mater. Chem. B 2018, 6, 3107–3115.

194

Niikura, K.; Sugimura, N.; Musashi, Y.; Mikuni, S.; Matsuo, Y.; Kobayashi, S.; Nagakawa, K.; Takahara, S.; Takeuchi, C.; Sawa, H. et al. Virus-like particles with removable cyclodextrins enable glutathione-triggered drug release in cells. Mol. BioSyst. 2013, 9, 501–507.

195

Aljabali, A. A. A.; Shukla, S.; Lomonossoff, G. P.; Steinmetz, N. F.; Evans, D. J. CPMV-DOX delivers. Mol. Pharm. 2013, 10, 3–10.

196

Nguyen, B.; Tolia, N. H. Protein-based antigen presentation platforms for nanoparticle vaccines. npj Vaccines 2021, 6, 70.

197
Gobeil, P.; Pillet, S.; Boulay, I.; Séguin, A.; Makarkov, A.; Heizer, G.; Bhutada, K.; Mahmood, A.; Charland, N.; Trépanier, S. et al. Phase 2 randomized trial of an AS03 adjuvanted plant-based virus-like particle vaccine for Covid-19 in healthy adults, older adults and adults with comorbidities. medRxiv, in press, https://doi.org/10.1101/2021.05.14.21257248.
198

Ward, B. J.; Séguin, A.; Couillard, J.; Trépanier, S.; Landry, N. Phase III: Randomized observer-blind trial to evaluate lot-to-lot consistency of a new plant-derived quadrivalent virus like particle influenza vaccine in adults 18–49 years of age. Vaccine 2021, 39, 1528–1533.

199

Chichester, J. A.; Green, B. J.; Jones, R. M.; Shoji, Y.; Miura, K.; Long, C. A.; Lee, C. K.; Ockenhouse, C. F.; Morin, M. J.; Streatfield, S. J. et al. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: A phase 1 dose-escalation study in healthy adults. Vaccine 2018, 36, 5865–5871.

200

Pillet, S.; Aubin, É.; Trépanier, S.; Poulin, J. F.; Yassine-Diab, B.; Meulen, J. T.; Ward, B. J.; Landry, N. Humoral and cell-mediated immune responses to H5N1 plant-made virus-like particle vaccine are differentially impacted by alum and GLA-SE adjuvants in a phase 2 clinical trial. npj Vaccines 2018, 3, 3.

201

Chichester, J. A.; Jones, R. M.; Green, B. J.; Stow, M.; Miao, F. D.; Moonsammy, G.; Streatfield, S. J.; Yusibov, V. Safety and immunogenicity of a plant-produced recombinant hemagglutinin-based influenza vaccine (HAI-05) derived from A/indonesia/05/2005 (H5N1) influenza virus: A phase 1 randomized, double-blind, placebo-controlled, dose-escalation study in healthy adults. Viruses 2012, 4, 3227–3244.

202

Cummings, J. F.; Guerrero, M. L.; Moon, J. E.; Waterman, P.; Nielsen, R. K.; Jefferson, S.; Gross, F. L.; Hancock, K.; Katz, J. M.; Yusibov, V. Safety and immunogenicity of a plant-produced recombinant monomer hemagglutinin-based influenza vaccine derived from influenza a (H1N1)pdm09 virus: A phase 1 dose-escalation study in healthy adults. Vaccine 2014, 32, 2251–2259.

203

Ortega-Rivera, O. A.; Shin, M. D.; Chen, A.; Beiss, V.; Moreno-Gonzalez, M. A.; Lopez-Ramirez, M. A.; Reynoso, M.; Wang, H.; Hurst, B. L.; Wang, J. et al. Trivalent subunit vaccine candidates for COVID-19 and their delivery devices. J. Am. Chem. Soc. 2021, 143, 14748–14765.

204

Christiansen, D.; Earnest-Silveira, L.; Chua, B.; Meuleman, P.; Boo, I.; Grubor-Bauk, B.; Jackson, D. C.; Keck, Z. Y.; Foung, S. K. H.; Drummer, H. E. et al. Immunological responses following administration of a genotype 1a/1b/2/3a quadrivalent HCV VLP vaccine. Sci. Rep. 2018, 8, 6483.

205

Zabel, F.; Mohanan, D.; Bessa, J.; Link, A.; Fettelschoss, A.; Saudan, P.; Kündig, T. M.; Bachmann, M. F. Viral particles drive rapid differentiation of memory B cells into secondary plasma cells producing increased levels of antibodies. J. Immunol. 2014, 192, 5499–5508.

206

Gomes, A. C.; Mohsen, M.; Bachmann, M. F. Harnessing nanoparticles for immunomodulation and vaccines. Vaccines 2017, 5, 6.

207

Kanekiyo, M.; Wei, C. J.; Yassine, H. M.; McTamney, P. M.; Boyington, J. C.; Whittle, J. R. R.; Rao, S. S.; Kong, W. P.; Wang, L. S.; Nabel, G. J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 2013, 499, 102–106.

208

Kang, Y. F.; Sun, C.; Zhuang, Z.; Yuan, R. Y.; Zheng, Q. B.; Li, J. P.; Zhou, P. P.; Chen, X. C.; Liu, Z.; Zhang, X. et al. Rapid development of SARS-CoV-2 spike protein receptor-binding domain self-assembled nanoparticle vaccine candidates. ACS Nano 2021, 15, 2738–2752.

209

Bruun, T. U. J.; Andersson, A. M. C.; Draper, S. J.; Howarth, M. Engineering a rugged nanoscaffold to enhance plug-and-display vaccination. ACS Nano 2018, 12, 8855–8866.

210

Hsia, Y.; Bale, J. B.; Gonen, S.; Shi, D.; Sheffler, W.; Fong, K. K.; Nattermann, U.; Xu, C.; Huang, P.-S.; Ravichandran, R. et al. Corrigendum: Design of a hyperstable 60-subunit protein icosahedron. Nature 2016, 540, 150.

211

Bale, J. B.; Gonen, S.; Liu, Y. X.; Sheffler, W.; Ellis, D.; Thomas, C.; Cascio, D.; Yeates, T. O.; Gonen, T.; King, N. P. et al. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 2016, 353, 389–394.

212

Babapoor, S.; Neef, T.; Mittelholzer, C.; Girshick, T.; Garmendia, A.; Shang, H. W.; Khan, M. I.; Burkhard, P. A novel vaccine using nanoparticle platform to present immunogenic M2e against avian influenza infection. Influenza Res. Treat. 2011, 2011, 126794.

213

Champion, C. I.; Kickhoefer, V. A.; Liu, G. C.; Moniz, R. J.; Freed, A. S.; Bergmann, L. L.; Vaccari, D.; Raval-Fernandes, S.; Chan, A. M.; Rome, L. H. et al. A vault nanoparticle vaccine induces protective mucosal immunity. PLoS One 2009, 4, e5409.

214

Hu, H.; Steinmetz, N. F. Development of a virus-like particle-based anti-HER2 breast cancer vaccine. Cancers 2021, 13, 2909.

215

Wang, W. J.; Liu, Z. D.; Zhou, X. X.; Guo, Z. Q.; Zhang, J.; Zhu, P.; Yao, S.; Zhu, M. Z. Ferritin nanoparticle-based SpyTag/SpyCatcher-enabled click vaccine for tumor immunotherapy. Nanomed. Nanotechnol. Biol. Med. 2019, 16, 69–78.

216

Rad-Malekshahi, M.; Fransen, M. F.; Krawczyk, M.; Mansourian, M.; Bourajjaj, M.; Chen, J.; Ossendorp, F.; Hennink, W. E.; Mastrobattista, E.; Amidi, M. Self-assembling peptide epitopes as novel platform for anticancer vaccination. Mol. Pharm. 2017, 14, 1482–1493.

Nano Research
Pages 7267-7285
Cite this article:
Liu T, Li L, Cheng C, et al. Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development. Nano Research, 2022, 15(8): 7267-7285. https://doi.org/10.1007/s12274-022-4385-4
Topics:

984

Views

9

Crossref

8

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 29 January 2022
Revised: 31 March 2022
Accepted: 01 April 2022
Published: 04 June 2022
© Tsinghua University Press 2022
Return