AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Robust superamphiphobic coatings with gradient and hierarchical architecture and excellent anti-flashover performances

Yi Xie1( )Wei Xiong1Shefiu Kareem1Chuxiong Qiu1Yongfei Hu1Ivan P. Parkin2Shengwu Wang3Huayun Wang4Junwu Chen3Lee Li3Zhi Chen5Huajun Sun1Xiujian Zhao1
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
Department of Chemistry, University College London, London WC1H 0AJ, UK
State Key Laboratory of Advanced Electromagnetic Engineering and Technology (Huazhong University of Science & Technology), Wuhan 430074, China
State Grid Jiangxi Electric Power, Company, Ltd., Electric Power Research Institute, Nanchang 330096, China
Wuhan Shuneng New Material Co., LTD, Wuhan 430074, China
Show Author Information

Graphical Abstract

An anti-flashover material was developed by fabricating a robust superamphiphobic coating with unique gradient and micro-nanoscale hierarchical textures.

Abstract

Biomimetic superhydrophobic (SH) coatings have emerged as a promising alternative to traditional room temperature vulcanizing (RTV) silicone rubber coatings for improving the flashover strength of insulators. However, organic contamination occurs in outdoor applications and thus a superamphiphobic (SAP) surface is more desirable but not yet reported for improving flashover performance. Herein, we developed a novel anti-flashover technique by fabricating robust SAP coating with unique gradient and micro-nanoscale hierarchical architecture. The SAP coating was fabricated by sequentially spray-depositing a resin-based primer and a silica-based topcoat on substrates (i.e., glass slides and insulators). The primer not only functions as an adhesive offering strong adhesion to the substrate but also offers a micromastoid-like structure facilitating the subsequent formation of hierarchical micro-nanostructure. The appropriate spraying pressure leads to a diffusion of the fluorocarbon-modified silica nanoparticles into the primer to form a unique gradient structure, by analogy to inserting bullets into a wood. These features render the SAP coating excellent robustness with strong abrasive resistance, excellent ultraviolet (UV) resistance, and excellent chemical and thermal stability. Pollution flashover property of the SAP coating was explored and compared with that of SH and RTV specimens, from which a novel organic-contamination model to evaluate the flashover performance was proposed. The coated SAP glass insulator demonstrated 42.9% pollution flashover voltage improvement than RTV-coated insulator. These stated unique features reveal the convincing potential of the present SAP coatings to be applied for not only outdoor transmission line insulators for anti-flashover but also other fields for self-cleaning, anti-fouling, and anti-icing.

Electronic Supplementary Material

Video
12274_2022_4386_MOESM2_ESM.mp4
12274_2022_4386_MOESM3_ESM.mp4
12274_2022_4386_MOESM4_ESM.mp4
12274_2022_4386_MOESM5_ESM.mp4
12274_2022_4386_MOESM6_ESM.mp4
12274_2022_4386_MOESM7_ESM.mp4
12274_2022_4386_MOESM8_ESM.mp4
12274_2022_4386_MOESM9_ESM.mp4
Download File(s)
12274_2022_4386_MOESM1_ESM.pdf (3 MB)

References

1

Sarathi, R.; Danikas, M. G. RTV silicone rubber coatings for outdoor insulators: A concise review of some factors affecting their behavior and some comments. J. Eng. Sci. Technol. Rev. 2021, 14, 163–169.

2

Ravindran, M.; Kumar, S. S.; Karuppiah, N.; Asokan, M. Experimental investigation on room temperature vulcanised silicone rubber and epoxy resin coated porcelain outdoor insulators located at highly polluted environment. J. Ceram. Process. Res. 2020, 21, 14–20.

3

Su, H. F.; Jia, Z. D.; Guan, Z. C.; Li, L. C. Durability of RTV-coated insulators used in subtropical areas. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 767–774.

4

Zhang, Z. J.; Qiao, X. H.; Xiang, Y. Z.; Jiang, X. L. Comparison of surface pollution flashover characteristics of RTV (room temperature vulcanizing) coated insulators under different coating damage modes. IEEE Access 2019, 7, 40904–40912.

5

Phillips, A. J.; Childs, D. J.; Schneider, H. M. Aging of nonceramic insulators due to corona from water drops. IEEE Trans. Power Delivery 1999, 14, 1081–1089.

6
Zhu, Y.; Haji, K.; Yamamoto, H.; Miyake, T.; Otsubo, M.; Honda, C.; Kaikake, K.; Sugamoto, K. A study on hydrophobicity of silicone rubber exposed to corona discharge. In IEEE 8thInternational Conference on Properties & applications of Dielectric Materials, Bali, Indonesia, 2006, pp 587–590.
7

Kareem, S.; Xie, Y.; Li, T.; Ding, Y. X.; Tsiwah, E. A.; Ahmed, A. S. A.; Chen, J. W.; Qiao, F.; Chen, Z.; Zhao, X. J. Base-catalyzed synthesis of superhydrophobic and antireflective films for enhanced photoelectronic applications. J. Mater. Res. Technol. 2020, 9, 3958–3966.

8

Xiong, W.; Li, L.; Qiao, F.; Chen, J. W.; Chen, Z.; Zhou, X. D.; Hu, K. W.; Zhao, X. J.; Xie, Y. Air superhydrophilic-superoleophobic SiO2-based coatings for recoverable oil/water separation mesh with high flux and mechanical stability. J. Colloid Interface Sci. 2021, 600, 118–126.

9

Liu, J.; Ye, L. J.; Sun, Y. L.; Hu, M. H.; Chen, F.; Wegner, S.; Mailänder, V.; Steffen, W.; Kappl, M.; Butt, H. J. Elastic superhydrophobic and photocatalytic active films used as blood repellent dressing. Adv. Mater. 2020, 32, 1908008.

10

Zhao, X.; Wei, J. F.; Li, B. C.; Li, S. B.; Tian, N.; Jing, L. Y.; Zhang, J. P. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy. J. Colloid Interface Sci. 2020, 575, 140–149.

11

Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.

12

Zhou, P. L.; Yu, H. B.; Zhong, Y.; Zou, W. H.; Wang, Z. D.; Liu, L. Q. Fabrication of waterproof artificial compound eyes with variable field of view based on the bioinspiration from natural hierarchical micro-nanostructures. Nano-Micro Lett. 2020, 12, 166.

13

Haghanifar, S.; McCourt, M.; Cheng, B. L.; Wuenschell, J.; Ohodnicki, P.; Leu, P. W. Creating glasswing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostructured glass through Bayesian learning and optimization. Mater. Horiz. 2019, 6, 1632–1642.

14

Tzianou, M.; Thomopoulos, G.; Vourdas, N.; Ellinas, K.; Gogolides, E. Tailoring wetting properties at extremes states to obtain antifogging functionality. Adv. Funct. Mater. 2021, 31, 2006687.

15

Bu, Y. B.; Shen, T. Y.; Yang, W. K.; Yang, S. Y.; Zhao, Y.; Liu, H.; Zheng, Y. J.; Liu, C. T.; Shen, C. Y. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin. Sci. Bull. 2021, 66, 1849–1857.

16

Che, P.; Liu, W.; Chang, X. X.; Wang, A. H.; Han, Y. S. Multifunctional silver film with superhydrophobic and antibacterial properties. Nano Res. 2016, 9, 442–450.

17

Hu, Y. F.; Kareem, S.; Dong, H.; Xiong, W.; Tian, S. Q.; Shamsi, J.; Li, L.; Zhao, X. J.; Xie, Y. CsPbBr3@SiO2 core–shell nanoparticle films for superhydrophobic coatings. ACS Appl. Nano Mater. 2021, 4, 6306–6315.

18

Jin, H. Y.; Jin, P.; Niu, R. D.; Li, Y. F.; He, B.; Gao, N. K.; Zhang, H. Flashover characteristics of discrete water droplets on the surface of super-hydrophobic silicone rubber. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1718–1725.

19

Arshad; Momen, G.; Farzaneh, M.; Nekahi, A. Properties and applications of superhydrophobic coatings in high voltage outdoor insulation: A review. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3630–3646.

20

Wang, C.; Li, W. D.; Jiang, Z. H.; Yang, X.; Sun, G. Y.; Zhang, G. J. UV-cured nanocomposite coating for surface charging mitigation and breakdown strength enhancement: Exploring the combination of surface topographical structure and perfluorooctyl chain. RSC Adv. 2020, 10, 16422–16430.

21

Chen, J. Y.; Chen, J. W.; Li, L. E.; Wang, S. W.; Xie, Y. Study on the self-cleaning phenomenon and anti-pollution flashover performance of micro-nanostructure superhydrophobic coating surface under a high humidity environment. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127552.

22

de Santos, H.; Sanz-Bobi, M. Á. Research on the pollution performance and degradation of superhydrophobic nano-coatings for toughened glass insulators. Electr. Power Syst. Res. 2021, 191, 106863.

23

Zhu, M. X.; Song, H. G.; Li, J. C.; Xue, J. Y.; Yu, Q. C.; Chen, J. M.; Zhang, G. J. Superhydrophobic and high-flashover-strength coating for HVDC insulating system. Chem. Eng. J. 2021, 404, 126476.

24

Vallabhuneni, S.; Movafaghi, S.; Wang, W.; Kota, A. K. Superhydrophobic coatings for improved performance of electrical insulators. Macromol. Mater. Eng. 2018, 303, 1800313.

25

Xu, W. J.; Niu, J. X.; Tian, K. Y.; Huang, Z. Y.; Li, J.; Wang, F. P.; Wei, Y.; Zhao, Y. S. Enhanced pollution flashover of a slurry coalescence superhydrophobic coating. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 310–317.

26

Li, Y. F.; Jin, H. Y.; Nie, S. C.; Zhang, P.; Gao, N. K. Dynamic behavior of water droplets and flashover characteristics on a superhydrophobic silicone rubber surface. Appl. Phys. Lett. 2017, 110, 201602.

27

Bagali, H. S.; Shaik, S. A.; P, N. Insulator contamination in transmission lines. Int. J. Eng. Res. Technol. 2015, 3, 1–8.

28

Hadipour, M.; Shiran, M. A. Various pollutions of power line insulators. Majlesi J. Energy Manage. 2017, 6, 29–38.

29

Chu, Z. L.; Seeger, S. Superamphiphobic surfaces. Chem. Soc. Rev. 2014, 43, 2784–2798.

30

Lian, Z. X.; Xu, J. K.; Wang, Z. B.; Weng, Z. K.; Wan, Y. L.; Zhang, L. S.; Yu, H. D. Research on HS-WEDM and chemical etching technology of superamphiphobic surfaces on Al substrates. Micro Nano Lett. 2016, 11, 425–429.

31

Wang, H. J.; Zhang, Z. H.; Wang, Z. K.; Liang, Y. H.; Cui, Z. Q.; Zhao, J.; Li, X. J.; Ren, L. Q. Multistimuli-responsive microstructured superamphiphobic surfaces with large-range, reversible switchable wettability for oil. ACS Appl. Mater. Interfaces 2019, 11, 28478–28486.

32

Wang, T.; Lv, C.; Ji, L. L.; He, X.; Wang, S. Designing re-entrant geometry: Construction of a superamphiphobic surface with large-sized particles. ACS Appl. Mater. Interfaces 2020, 12, 49155–49164.

33

Teisala, H.; Geyer, F.; Haapanen, J.; Juuti, P.; Mäkelä, J. M.; Vollmer, D.; Butt, H. J. Ultrafast processing of hierarchical nanotexture for a transparent superamphiphobic coating with extremely low roll-off angle and high impalement pressure. Adv. Mater. 2018, 30, 1706529.

34

Wang, K. L.; Liu, X. R.; Tan, Y.; Zhang, W.; Zhang, S. F.; Li, J. Z.; Huang, A. M. Highly fluorinated and hierarchical HNTs/SiO2 hybrid particles for substrate-independent superamphiphobic coatings. Chem. Eng. J. 2019, 359, 626–640.

35

Zhou, H.; Wang, H. X.; Niu, H. T.; Zhao, Y.; Xu, Z. G.; Lin, T. A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces. Adv. Funct. Mater. 2017, 27, 1604261.

36

Han, X. T.; Peng, J. Y.; Jiang, S. H.; Xiong, J.; Song, Y.; Gong, X. Robust superamphiphobic coatings based on raspberry-like hollow SnO2 composites. Langmuir 2020, 36, 11044–11053.

37

Zhou, H.; Wang, H. X.; Niu, H. T.; Fang, J.; Zhao, Y.; Lin, T. Superstrong, chemically stable, superamphiphobic fabrics from particle-free polymer coatings. Adv. Mater. Interfaces 2015, 2, 1400559.

38

Lu, Y.; Sathasivam, S.; Song, J. L.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135.

39

Wei, J. F.; Li, B. C.; Jing, L. Y.; Tian, N.; Zhao, X.; Zhang, J. P. Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating. Chem. Eng. J. 2020, 390, 124562.

40

Jiao, X.; Li, M. T.; Yu, X. Q.; Wong, W. S. Y.; Zhang, Y. F. Oil-immersion stable superamphiphobic coatings for long-term super liquid-repellency. Chem. Eng. J. 2021, 420, 127606.

41

Zhu, Q.; Li, B. C.; Li, S. B.; Luo, G.; Zheng, B. H.; Zhang, J. P. Durable superamphiphobic coatings with high static and dynamic repellency towards liquids with low surface tension and high viscosity. J. Colloid Interface Sci. 2020, 578, 262–272.

42

Guo, C. L.; Ding, H.; Xie, M. X.; Zhang, H. Q.; Hong, X. Y.; Sun, L. Y.; Ding, F. C. Multifunctional superamphiphobic fluorinated silica with a core–shell structure for anti-fouling and anti-corrosion applications. Colloids Surf. A Physicochem. Eng. Asp. 2021, 615, 126155.

43

Qing, Y. Q.; Shi, S. L.; Lv, C. J.; Zheng, Q. S. Microskeleton-nanofiller composite with mechanical super-robust superhydrophobicity against abrasion and impact. Adv. Funct. Mater. 2020, 30, 1910665.

44

Hu, C.; Chen, W. H.; Li, T.; Ding, Y. X.; Yang, H.; Zhao, S. J.; Tsiwah, E. A.; Zhao, X. J.; Xie, Y. Constructing non-fluorinated porous superhydrophobic SiO2-based films with robust mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2018, 551, 65–73.

45

Dai, Z. Y.; Chen, G.; Ding, S.; Lin, J.; Li, S. B.; Xu, Y.; Zhou, B. P. Facile formation of hierarchical textures for flexible, translucent, and durable superhydrophobic film. Adv. Funct. Mater. 2021, 31, 2008574.

46

Li, F. R.; Kong, W. T.; Bhushan, B.; Zhao, X. Z.; Pan, Y. L. Ultraviolet-driven switchable superliquiphobic/superliquiphilic coating for separation of oil-water mixtures and emulsions and water purification. J. Colloid Interface Sci. 2019, 557, 395–407.

47

Zhang, Z. Q.; Yu, D. F.; Xu, X. B.; Yang, H.; Wyman, I.; Wang, J. B.; Wu, X. Versatile snail-inspired superamphiphobic coatings with repeatable adhesion and recyclability. Chem. Eng. Sci. 2021, 230, 116182.

48

Chen, Y. Y.; Liu, W. Y.; Xu, C.; Liu, Y.; He, J. S.; Tian, D.; Long, L. L.; Yang, G.; Zhang, X. H.; Zhang, Y. Z. Synthesis of a novel superamphiphobic coating with a hierarchical three-dimensional structure inspired by bird’s nest. Appl. Clay Sci. 2021, 204, 106031.

49

Krumpfer, J. W.; Bian, P.; Zheng, P. W.; Gao, L. C.; McCarthy, T. J. Contact angle hysteresis on superhydrophobic surfaces: An ionic liquid probe fluid offers mechanistic insight. Langmuir 2011, 27, 2166–2169.

50

Li, S. H.; Page, K.; Sathasivam, S.; Heale, F.; He, G. J.; Lu, Y.; Lai, Y. K.; Chen, G. Q.; Carmalt, C. J.; Parkin, I. P. Efficiently texturing hierarchical superhydrophobic fluoride-free translucent films by AACVD with excellent durability and self-cleaning ability. J. Mater. Chem. A 2018, 6, 17633–17641.

51

Celik, N.; Torun, I.; Ruzi, M.; Esidir, A.; Onses, M. S. Fabrication of robust superhydrophobic surfaces by one-step spray coating: Evaporation driven self-assembly of wax and nanoparticles into hierarchical structures. Chem. Eng. J. 2020, 396, 125230.

52

Bi, J. K.; Hao, Y. P.; Yang, L.; Zheng, Y.; Li, L. C. Impact of hydrophobicity on wetting characteristics of composite insulators. IEEE Access 2020, 8, 159316–159323.

53
Xu, W. J. ; Li, J. ; Huang, Z. Y. ; Wang, F. P. Low water adhesion enhances the pollution flashover performance of superhydrophobic coating. In 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), East Rutherford, USA, 2020, pp 151–154.
54

Xue, J. Y.; Wang, H.; Chen, J. H.; Li, K. F.; Liu, Y. Q.; Song, B. P.; Deng, J. B.; Zhang, G. J. Effects of surface roughness on surface charge accumulation characteristics and surface flashover performance of alumina-filled epoxy resin spacers. J. Appl. Phys. 2018, 124, 083302.

Nano Research
Pages 7565-7576
Cite this article:
Xie Y, Xiong W, Kareem S, et al. Robust superamphiphobic coatings with gradient and hierarchical architecture and excellent anti-flashover performances. Nano Research, 2022, 15(8): 7565-7576. https://doi.org/10.1007/s12274-022-4386-3
Topics:

1189

Views

20

Crossref

18

Web of Science

21

Scopus

2

CSCD

Altmetrics

Received: 01 February 2022
Revised: 13 March 2022
Accepted: 01 April 2022
Published: 20 June 2022
© Tsinghua University Press 2022
Return