AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The role of surface charges in the blinking mechanisms and quantum-confined Stark effect of single colloidal quantum dots

Jialu LiDengfeng WangGuofeng Zhang( )Changgang YangWenli GuoXue HanXiuqing BaiRuiyun ChenChengbing QinJianyong HuLiantuan Xiao( )Suotang Jia
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Show Author Information

Graphical Abstract

The negative surface charges can simultaneously suppress photoluminescence (PL) blinking and spectral diffusion of single colloidal quantum dots, while the positive surface charges can change the quantum dots’ blinking mech anisms from Auger-blinking to band-edge carrier (BC)-blinking.

Abstract

The two frequently observed phenomena, photoluminescence (PL) blinking and quantum-confined Stark effect (QCSE)-induced spectral diffusion, are not conducive to the applications of colloidal quantum dots (QDs). It remains elusive how these two phenomena are linked to each other. Unraveling the potential link between blinking and QCSE could facilitate the adoption of appropriate strategies that can simultaneously suppress both PL blinking and spectral diffusion. In this work, we investigated the blinking mechanism and QCSE of single CdSe/CdS/ZnS QDs in the presence of positive and negative surface charges using single-dot PL spectroscopy. We found that the negative surface charges can simultaneously suppress PL blinking and spectral diffusion of single QDs. On the other hand, the positive surface charges could change the blinking mechanisms of QDs from Auger-blinking to band-edge carrier (BC)-blinking. Two types of QCSE were observed, and a significant QCSE-induced spectral broadening of 5.25 nm was measured, which could be attributed to the hopping of surface charges between different surface-trap sites. Based on these findings, several theoretical models are proposed to explain various phenomena observed.

Electronic Supplementary Material

Download File(s)
12274_2022_4389_MOESM1_ESM.pdf (1.2 MB)

References

1

Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G. Quantum dots for display applications. Angew. Chem., Int. Ed. 2020, 59, 22312–22323.

2

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

3

Cheng, Y.; Wan, H. Y.; Liang, T. Y.; Liu, C.; Wu, M. H.; Hong, H.; Liu, K. H.; Shen, H. B. Continuously graded quantum dots: Synthesis, applications in quantum dot light-emitting diodes, and perspectives. J. Phys. Chem. Lett. 2021, 12, 5967–5978.

4

Yuan, F. L.; He, P.; Xi, Z. F.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. Erratum to: Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Res. 2020, 13, 2309–2310.

5

Dang, C.; Lee, J.; Breen, C.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, A. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 2012, 7, 335–339.

6

Fan, F. J.; Voznyy, O.; Sabatini, R. P.; Bicanic, K. T.; Adachi, M. M.; McBride, J. R.; Reid, K. R.; Park, Y. S.; Li, X. Y.; Jain, A. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 2017, 544, 75–79.

7

Emin, S.; Singh, S. P.; Han, L. Y.; Satoh, N.; Islam, A. Colloidal quantum dot solar cells. Solar Energy 2011, 85, 1264–1282.

8

Nayak, P. K.; Mahesh, S.; Snaith, H. J.; Cahen, D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019, 4, 269–285.

9

Zhou, J.; Yang, Y.; Zhang, C. Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669–11717.

10

Yang, C. G.; Xiao, R. L.; Zhou, S. R.; Yang, Y. G.; Zhang, G. F.; Li, B.; Guo, W. L.; Han, X.; Wang, D. H.; Bai, X. Q. et al. Efficient, stable, and photoluminescence intermittency-free CdSe-based quantum dots in the full-color range. ACS Photonics 2021, 8, 2538–2547.

11

Efros, A. L.; Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661–671.

12

Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.

13

Li, Z. H.; Chen, F.; Wang, L.; Shen, H. B.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, N.; Li, L. S. Synthesis and evaluation of ideal core/shell quantum dots with precisely controlled shell growth: Nonblinking, single photoluminescence decay channel, and suppressed fret. Chem. Mater. 2018, 30, 3668–3676.

14

Lin, Q. L.; Wang, L.; Li, Z. H.; Shen, H. B.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, L. S. Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process. ACS Photonics 2018, 5, 939–946.

15

Guo, W. L.; Tang, J. L.; Zhang, G. F.; Li, B.; Yang, C. G.; Chen, R. Y.; Qin, C. B.; Hu, J. Y.; Zhong, H. Z.; Xiao, L. T. et al. Photoluminescence blinking and biexciton Auger recombination in single colloidal quantum dots with sharp and smooth core/shell interfaces. J. Phys. Chem. Lett. 2020, 12, 405–412.

16

Meng, R. Y.; Qin, H. Y.; Niu, Y.; Fang, W.; Yang, S.; Lin, X.; Cao, H. J.; Ma, J. L.; Lin, W. Z.; Tong, L. M. et al. Charging and discharging channels in photoluminescence intermittency of single colloidal CdSe/CdS core/shell quantum dot. J. Phys. Chem. Lett. 2016, 7, 5176–5182.

17

Hou, X. Q.; Kang, J.; Qin, H. Y.; Chen, X. W.; Ma, J. L.; Zhou, J. H.; Chen, L. P.; Wang, L. J.; Wang, L. W.; Peng, X. G. Engineering Auger recombination in colloidal quantum dots via dielectric screening. Nat. Commun. 2019, 10, 1750.

18

Yuan, G. C.; Gómez, D. E.; Kirkwood, N.; Boldt, K.; Mulvaney, P. Two mechanisms determine quantum dot blinking. ACS Nano 2018, 12, 3397–3405.

19

Li, B.; Zhang, G. F.; Zhang, Y.; Yang, C. G.; Guo, W. L.; Peng, Y. G.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Hu, J. Y. et al. Biexciton dynamics in single colloidal CdSe quantum dots. J. Phys. Chem. Lett. 2020, 11, 10425–10432.

20

Efros, A. L.; Rosen, M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 1997, 78, 1110–1113.

21

Hu, F. R.; Lv, B. H.; Yin, C. Y.; Zhang, C. F.; Wang, X. Y.; Lounis, B.; Xiao, M. Carrier multiplication in a single semiconductor nanocrystal. Phys. Rev. Lett. 2016, 116, 106404.

22

Li, Z. J.; Zhang, G. F.; Li, B.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Xiao, L. T.; Jia, S. T. Enhanced biexciton emission from single quantum dots encased in N-type semiconductor nanoparticles. Appl. Phys. Lett. 2017, 111, 153106.

23

Yang, C. G.; Zhang, G. F.; Feng, L. H.; Li, B.; Li, Z. J.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Xiao, L. T.; Jia, S. T. Suppressing the photobleaching and photoluminescence intermittency of single near-infrared CdSeTe/ZnS quantum dots with p-phenylenediamine. Opt. Express 2018, 26, 11889–11902.

24

Thomas, E. M.; Ghimire, S.; Kohara, R.; Anil, A. N.; Yuyama, K. I.; Takano, Y.; Thomas, K. G.; Biju, V. Blinking suppression in highly excited CdSe/ZnS quantum dots by electron transfer under large positive Gibbs (free) energy change. ACS Nano 2018, 12, 9060–9069.

25

Li, Y. L.; Ding, T.; Luo, X.; Chen, Z. W.; Liu, X.; Lu, X.; Wu, K. F. Biexciton Auger recombination in mono-dispersed, quantum-confined CsPbBr3 perovskite nanocrystals obeys universal volume-scaling. Nano Res. 2019, 12, 619–623.

26

Hou, X. Q.; Qin, H. Y.; Peng, X. G. Enhancing dielectric screening for Auger suppression in CdSe/CdS quantum dots by epitaxial growth of ZnS shell. Nano Lett. 2021, 21, 3871–3878.

27

Frantsuzov, P. A.; Volkán-Kacsó, S.; Jankó, B. Model of fluorescence intermittency of single colloidal semiconductor quantum dots using multiple recombination centers. Phys. Rev. Lett. 2009, 103, 207402.

28

Li, B.; Huang, H.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Biju, V. P.; Rogach, A. L. et al. Excitons and biexciton dynamics in single CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett. 2018, 9, 6934–6940.

29

Han, X.; Zhang, G. F.; Li, B.; Yang, C. G.; Guo, W. L.; Bai, X. Q.; Huang, P.; Chen, R. Y.; Qin, C. B.; Hu, J. Y. et al. Blinking mechanisms and intrinsic quantum-confined Stark effect in single methylammonium lead bromide perovskite quantum dots. Small 2020, 16, 2005435.

30

Quinn, S. D.; Rafferty, A.; Dick, E.; Morten, M. J.; Kettles, F. J.; Knox, C.; Murrie, M.; Magennis, S. W. Surface charge control of quantum dot blinking. J. Phys. Chem. C 2016, 120, 19487–19491.

31

Empedocles, S. A.; Bawendi, M. G. Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots. Science 1997, 278, 2114–2117.

32

Neuhauser, R. G.; Shimizu, K. T.; Woo, W. K.; Empedocles, S. A.; Bawendi, M. G. Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots. Phys. Rev. Lett. 2000, 85, 3301–3304.

33

Ihara, T.; Kanemitsu, Y. Spectral diffusion of neutral and charged exciton transitions in single CdSe/ZnS nanocrystals due to quantum-confined Stark effect. Phys. Rev. B 2014, 90, 195302.

34

Pein, B. C.; Chang, W. D.; Hwang, H. Y.; Scherer, J.; Coropceanu, I.; Zhao, X. G.; Zhang, X.; Bulović, V.; Bawendi, M.; Nelson, K. A. Terahertz-driven luminescence and colossal Stark effect in CdSe-CdS colloidal quantum dots. Nano Lett. 2017, 17, 5375–5380.

35

Bar-Elli, O.; Steinitz, D.; Yang, G. L.; Tenne, R.; Ludwig, A.; Kuo, Y.; Triller, A.; Weiss, S.; Oron, D. Rapid voltage sensing with single nanorods via the quantum confined Stark effect. ACS Photonics 2018, 5, 2860–2867.

36

Toth, M.; Aharonovich, I. Single photon sources in atomically thin materials. Annu. Rev. Phys. Chem. 2019, 70, 123–142.

37

Liu, S.; Borys, N. J.; Huang, J.; Talapin, D. V.; Lupton, J. M. Exciton storage in CdSe/CdS tetrapod semiconductor nanocrystals: Electric field effects on exciton and multiexciton states. Phys. Rev. B 2012, 86, 045303.

38

Kraus, R. M.; Lagoudakis, P. G.; Rogach, A. L.; Talapin, D. V.; Weller, H.; Lupton, J. M.; Feldmann, J. Room-temperature exciton storage in elongated semiconductor nanocrystals. Phys. Rev. Lett. 2007, 98, 017401.

39

Zhu, S. C.; Lin, S.; Li, J.; Yu, Z. G.; Cao, H. C.; Yang, C.; Li, J. M.; Zhao, L. X. Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for gan-based LEDs. Appl. Phys. Lett. 2017, 111, 171105.

40

Zhang, G. F.; Yang, C. G.; Ge, Y.; Peng, Y. G.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Zhang, L.; Zhong, H. Z.; Zheng, Y. J. et al. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods. Front. Phys. 2019, 14, 63601.

41

Fernée, M. J.; Plakhotnik, T.; Louyer, Y.; Littleton, B. N.; Potzner, C.; Tamarat, P.; Mulvaney, P.; Lounis, B. Spontaneous spectral diffusion in CdSe quantum dots. J. Phys. Chem. Lett. 2012, 3, 1716–1720.

42

Ibuki, H.; Ihara, T.; Kanemitsu, Y. Spectral diffusion of emissions of excitons and trions in single CdSe/ZnS nanocrystals: Charge fluctuations in and around nanocrystals. J. Phys. Chem. C 2016, 120, 23772–23779.

43

Lohmann, S. H.; Strelow, C.; Mews, A.; Kipp, T. Surface charges on CdSe-dot/CdS-rod nanocrystals: Measuring and modeling the diffusion of exciton-fluorescence rates and energies. ACS Nano 2017, 11, 12185–12192.

44

Litvin, A. P.; Martynenko, I. V.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun'ko, Y. K. Colloidal quantum dots for optoelectronics. J. Mater. Chem. A 2017, 5, 13252–13275.

45

Ryman-Rasmussen, J. P.; Riviere, J. E.; Monteiro-Riviere, N. A. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J. Invest. Dermatol. 2007, 127, 143–153.

46

Jha, P. P.; Guyot-Sionnest, P. Trion decay in colloidal quantum dots. ACS Nano 2009, 3, 1011–1015.

47

Park, Y. S.; Bae, W. K.; Pietryga, J. M.; Klimov, V. I. Auger recombination of biexcitons and negative and positive trions in individual quantum dots. ACS Nano 2014, 8, 7288–7296.

48

Li, B.; Zhang, G. F.; Yang, C. G.; Li, Z. J.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Huang, H.; Xiao, L. T.; Jia, S. T. Fast recognition of single quantum dots from high multi-exciton emission and clustering effects. Opt. Express 2018, 26, 4674–4685.

49

Bai, X. Q.; Li, H. Y.; Peng, Y. G.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Han, X.; Li, J. L.; Chen, R. Y.; Qin, C. B. et al. Role of aspect ratio in the photoluminescence of single CdSe/CdS dot-in-rods. J. Phys. Chem. C 2022, 126, 2699–2707.

50

Kuno, M.; Fromm, D. P.; Hamann, H. F.; Gallagher, A.; Nesbitt, D. J. “On”/“off” fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys. 2001, 115, 1028–1040.

51

Li, B.; Zhang, G. F.; Wang, Z.; Li, Z. J.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Xiao, L. T.; Jia, S. T. Suppressing the fluorescence blinking of single quantum dots encased in N-type semiconductor nanoparticles. Sci. Rep. 2016, 6, 32662.

52

Sher, P. H.; Smith, J. M.; Dalgarno, P. A.; Warburton, R. J.; Chen, X.; Dobson, P. J.; Daniels, S. M.; Pickett, N. L.; O’Brien, P. Power law carrier dynamics in semiconductor nanocrystals at nanosecond timescales. Appl. Phys. Lett. 2008, 92, 101111.

53

Galland, C.; Ghosh, Y.; Steinbrück, A.; Sykora, M.; Hollingsworth, J. A.; Klimov, V. I.; Htoon, H. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 2011, 479, 203–207.

54

Chen, R. H.; Cao, J.; Duan, Y.; Hui, Y.; Chuong, T. T.; Ou, D. H.; Han, F. M.; Cheng, F. W.; Huang, X. F.; Wu, B. H. et al. High-efficiency, hysteresis-less, UV-stable perovskite solar cells with cascade ZnO-ZnS electron transport layer. J. Am. Chem. Soc. 2019, 141, 541–547.

55

Zang, H. D.; Cristea, M.; Shen, X.; Liu, M. Z.; Camino, F.; Cotlet, M. Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: Indirect evidence for a permanent dipole moment. Nanoscale 2015, 7, 14897–14905.

56

Walters, G.; Wei, M.; Voznyy, O.; Quintero-Bermudez, R.; Kiani, A.; Smilgies, D. M.; Munir, R.; Amassian, A.; Hoogland, S.; Sargent, E. The quantum-confined Stark effect in layered hybrid perovskites mediated by orientational polarizability of confined dipoles. Nat. Commun. 2018, 9, 4214.

57

Lv, B. H.; Zhu, T. Y.; Tang, Y.; Lv, Y.; Zhang, C. F.; Wang, X. Y.; Shu, D. J.; Xiao, M. Probing permanent dipole moments and removing exciton fine structures in single perovskite nanocrystals by an electric field. Phys. Rev. Lett. 2021, 126, 197403.

Nano Research
Pages 7655-7661
Cite this article:
Li J, Wang D, Zhang G, et al. The role of surface charges in the blinking mechanisms and quantum-confined Stark effect of single colloidal quantum dots. Nano Research, 2022, 15(8): 7655-7661. https://doi.org/10.1007/s12274-022-4389-0
Topics:

1029

Views

15

Crossref

16

Web of Science

16

Scopus

2

CSCD

Altmetrics

Received: 04 January 2022
Revised: 01 March 2022
Accepted: 04 April 2022
Published: 31 May 2022
© Tsinghua University Press 2022
Return