Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Design and development of high-efficiency and durable oxygen evolution reaction (OER) electrocatalysts is crucial for hydrogen production from seawater splitting. Herein, we report the in situ electrochemical conversion of a nanoarray of Ni(TCNQ)2 (TCNQ = tetracyanoquinodimethane) on graphite paper into Ni(OH)2 nanoparticles confined in a conductive TCNQ nanoarray (Ni(OH)2-TCNQ/GP) by anode oxidation. The Ni(OH)2-TCNQ/GP exhibits high OER performance and demands overpotentials of 340 and 382 mV to deliver 100 mA·cm−2 in alkaline freshwater and alkaline seawater, respectively. Meanwhile, the Ni(OH)2-TCNQ/GP also demonstrates steady long-term electrochemical durability for at least 80 h under alkaline seawater.
Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141–145.
Chow, J.; Kopp, R. J.; Portney, P. R. Energy resources and global development. Science 2003, 302, 1528–1531.
Ren, Y. C.; Li, Z. R.; Deng, B.; Ye, C.; Zhang, L. C.; Wang, Y.; Li, T. S.; Liu, Q.; Cui, G. W.; Asiri, A. M. et al. Superior hydrogen evolution electrocatalysis enabled by CoP nanowire array on graphite felt. Int. J. Hydrogen Energy 2022, 47, 3580–3586.
Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.
Wang, D.; Chang, Y. X.; Li, Y. R.; Zhang, S. L.; Xu, S. L. Well-dispersed NiCoS2 nanoparticles/rGO composite with a large specific surface area as an oxygen evolution reaction electrocatalyst. Rare Met. 2021, 40, 3156–3165.
Xu, S. R.; Zhao, H. T.; Li, T. S.; Liang, J.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Asiri, A. M.; Wu, Q.; Sun, X. P. Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: Recent advances and future prospects. J. Mater. Chem. A 2020, 8, 19729–19745.
Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326.
Wang, X. Y.; He, Y.; Han, X. P.; Zhao, J.; Li, L. L.; Zhang, J. F.; Zhong, C.; Deng, Y. D.; Hu, W. B. Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Res. 2022, 15, 1246–1253.
Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M. R.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.
Song, Y. J.; Ji, K. Y.; Duan, H. H.; Shao, M. F. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. Exploration 2021, 1, 20210050.
Chung, D. Y.; Lopes, P. P.; Farinazzo Bergamo Dias Martins, P.; He, H. Y.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y. et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 2020, 5, 222–230.
Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.
Ding, P.; Meng, C. Q.; Liang, J.; Li, T. S.; Wang, Y.; Liu, Q.; Luo, Y. L.; Cui, G. W.; Asiri, A. M.; Lu, S. et al. NiFe layered-double-hydroxide nanosheet arrays on graphite felt: A 3D electrocatalyst for highly efficient water oxidation in alkaline media. Inorg. Chem. 2021, 60, 12703–12708.
Guo, D. Z.; Li, X.; Jiao, Y. Q.; Yan, H. J.; Wu, A. P.; Yang, G. C.; Wang, Y.; Tian, C. G.; Fu, H. G. A dual-active Co–CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting. Nano Res. 2022, 15, 238–247.
Wang, W. B.; Yang, Y.; Zhao, Y.; Wang, S. Z.; Ai, X. M.; Fang, J. K.; Liu, Y. W. Multi-scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential. Nano Res. 2022, 15, 872–880.
Li, X. P.; Wang, Y.; Wang, J. J.; Da, Y. M.; Zhang, J. F.; Li, L. L.; Zhong, C.; Deng, Y. D.; Han, X. P.; Hu, W. B. Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni-NiO composite electrocatalysts for selective hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 2003414.
Thangavel, P.; Kim, G.; Kim, K. S. Electrochemical integration of amorphous NiFe (oxy)hydroxides on surface-activated carbon fibers for high-efficiency oxygen evolution in alkaline anion exchange membrane water electrolysis. J. Mater. Chem. A 2021, 9, 14043–14051.
Meena, A.; Thangavel, P.; Jeong, D. S.; Singh, A. N.; Jana, A.; Im, H.; Nguyen, D. A.; Kim, K. S. Crystalline-amorphous interface of mesoporous Ni2P@FePOxHy for oxygen evolution at high current density in alkaline-anion-exchange-membrane water-electrolyzer. Appl. Catal. B 2022, 306, 121127.
Harzandi, A. M.; Shadman, S.; Nissimagoudar, A. S.; Kim, D. Y.; Lim, H. D.; Lee, J. H.; Kim, M. G.; Jeong, H. Y.; Kim, Y.; Kim, K. S. Ruthenium core–shell engineering with nickel single atoms for selective oxygen evolution via nondestructive mechanism. Adv. Energy Mater. 2021, 11, 2003448.
Thangavel, P.; Ha, M. R.; Kumaraguru, S.; Meena, A.; Singh, A. N.; Harzandi, A. M.; Kim, K. S. Graphene-nanoplatelets-supported NiFe-MOF: High-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy Environ. Sci. 2020, 13, 3447–3458.
Dai, L.; Chen, Z. N.; Li, L. X.; Yin, P. Q.; Liu, Z. Q.; Zhang, H. Ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting. Adv. Mater. 2020, 32, 1906915.
Shukla, A.; Singh, S. C.; Saraj, C. S.; Verma, G.; Guo, C. Ni-based overall water splitting electrocatalysts prepared via laser-ablation-in-liquids combined with electrophoretic deposition. Mater. Today Chem. 2022, 23, 100691.
Landman, A.; Hadash, S.; Shter, G. E.; Ben-Azaria, A.; Dotan, H.; Rothschild, A.; Grader, G. S. High performance core/shell Ni/Ni(OH)2 electrospun nanofiber anodes for decoupled water splitting. Adv. Funct. Mater. 2021, 31, 2008118.
Lv, C. C.; Wang, X. B.; Gao, L. J.; Wang, A. J.; Wang, S. F.; Wang, R. N.; Ning, X. K.; Li, Y. G.; Boukhvalov, D. W.; Huang, Z. P. et al. Triple functions of Ni(OH)2 on the surface of WN nanowires remarkably promoting electrocatalytic activity in full water splitting. ACS Catal. 2020, 10, 13323–13333.
Guo, X. X.; Kong, R. M.; Zhang, X. P.; Du, H. T.; Qu, F. L. Ni(OH)2 nanoparticles embedded in conductive microrod array: An efficient and durable electrocatalyst for alkaline oxygen evolution reaction. ACS Catal. 2018, 8, 651–655.
Xie, A. J.; Zhang, J.; Tao, X.; Zhang, J. H.; Wei, B. Y.; Peng, W. H.; Tao, Y. W.; Luo, S. P. Nickel-based MOF derived Ni@NiO/N-C nanowires with core–shell structure for oxygen evolution reaction. Electrochim. Acta 2019, 324, 134814.
Deng, B.; Liang, J.; Yue, L. C.; Li, T. S.; Liu, Q.; Liu, Y.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L. et al. CoFe-LDH nanowire arrays on graphite felt: A high-performance oxygen evolution electrocatalyst in alkaline media. Chin. Chem. Lett. 2022, 33, 890–892.
Wang, T. J.; Liu, X. Y.; Li, Y.; Li, F. M.; Deng, Z. W.; Chen, Y. Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction. Nano Res. 2020, 13, 79–85.
Ye, C.; Zhang, L. C.; Yue, L. C.; Deng, B.; Cao, Y.; Liu, Q.; Luo, Y. L.; Lu, S. Y.; Zheng, B. Z.; Sun, X. P. A NiCo LDH nanosheet array on graphite felt: An efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorg. Chem. Front. 2021, 8, 3162–3166.
Han, L. L.; Guo, L. M.; Dong, C. Q.; Zhang, C.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res. 2019, 12, 2281–2287.
Meng, C. Q.; Cao, Y.; Luo, Y. L.; Zhang, F.; Kong, Q. Q.; Alshehri, A. A.; Alzahrani, K. A.; Li, T. S.; Liu, Q.; Sun, X. P. A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorg. Chem. Front. 2021, 8, 3007–3011.
Yin, P. Q.; Wu, G.; Wang, X. Q.; Liu, S. J.; Zhou, F. Y.; Dai, L.; Wang, X.; Yang, B.; Yu, Z. Q. NiCo-LDH nanosheets strongly coupled with GO-CNTs as a hybrid electrocatalyst for oxygen evolution reaction. Nano Res. 2021, 14, 4783–4788.
Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.
Lu, X. Y.; Pan, J.; Lovell, E.; Tan, T. H.; Ng, Y. H.; Amal, R. A sea-change: Manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater. Energy Environ. Sci. 2018, 11, 1898–1910.
Sun, Y. T.; Xu, S. S.; Ortíz-Ledón, C. A.; Zhu, J. W.; Chen, S.; Duan, J. J. Biomimetic assembly to superplastic metal-organic framework aerogels for hydrogen evolution from seawater electrolysis. Exploration 2021, 1, 20210021.
Yang, C. L.; Zhang, H. H.; Yu, K.; Xie, S. H.; Tong, H. N.; Song, Y.; Shi, G. S.; Gu, H. Y.; Chen, C.; Zhang, L. M. Stoichiometry-dependent oxygen evolution electrocatalysis on open-tubular nitrogen-doped carbon column supported transition metal oxides. ACS Appl. Energy Mater. 2020, 3, 2010–2019.
Ren, X.; Wu, T. Z.; Sun, Y. M.; Li, Y.; Xian, G. Y.; Liu, X. H.; Shen, C. M.; Gracia, J.; Gao, H. J.; Yang, H. T. et al. Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 2021, 12, 2608.
Clérac, R.; O’Kane, S.; Cowen, J.; Ouyang, X.; Heintz, R.; Zhao, H. H.; Bazile, M. J.; Dunbar, K. R. Glassy magnets composed of metals coordinated to 7, 7, 8, 8-tetracyanoquinodimethane: M(TCNQ)2 (M = Mn, Fe, Co, Ni). Chem. Mater. 2003, 15, 1840–1850.
Ramanathan, R.; Walia, S.; Kandjani, A. E.; Balendran, S.; Mohammadtaheri, M.; Bhargava, S. K.; Kalantar-zadeh, K.; Bansal, V. Low-temperature fabrication of alkali metal–organic charge transfer complexes on cotton textile for optoelectronics and gas sensing. Langmuir 2015, 31, 1581–1587.
Lee, S. Y.; Kim, S. J.; Lee, W. J.; Lee, Y. K. Boosting activity and durability of an electrodeposited Ni(OH)2 catalyst using carbon nanotube-grafted substrates for the alkaline oxygen evolution reaction. ACS Appl. Nano Mater. 2021, 4, 10267–10274.
Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632–2641.
Higo, M.; Futagawa, T.; Mitsushio, M.; Yoshidome, T.; Ozono, Y. Adsorption state and morphology of tetracyanoquinodimethane deposited from solution onto the atomically smooth native oxide surface of Al(111) films studied by X-ray photoelectron spectroscopy and atomic force microscopy. J. Phys. Chem. B 2003, 107, 5871–5876.
Tong, S. F.; Zheng, M. B.; Lu, Y.; Lin, Z. X.; Li, J.; Zhang, X. P.; Shi, Y.; He, P.; Zhou, H. S. Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li-O2 batteries. J. Mater. Chem. A 2015, 3, 16177–16182.
Mansour, A. N. Characterization of β-Ni(OH)2 by XPS. Surf. Sci. Spectra 1994, 3, 239–246.
Wei, P. K.; Hao, Z. W.; Yang, Y.; Liu, M. Y.; Zhang, H. J.; Gao, M. R.; Yu, S. H. Unconventional dual-vacancies in nickel diselenide-graphene nanocomposite for high-efficiency oxygen evolution catalysis. Nano Res. 2020, 13, 3292–3298.
Ramsundar, R. M.; Debgupta, J.; Pillai, V. K.; Joy, P. A. Co3O4 nanorods-efficient non-noble metal electrocatalyst for oxygen evolution at neutral pH. Electrocatalysis 2015, 6, 331–340.
Cao, Y.; Wang, T.; Li, X.; Zhang, L. C.; Luo, Y. L.; Zhang, F.; Asiri, A. M.; Hu, J. M.; Liu, Q.; Sun, X. P. A hierarchical CuO@NiCo layered double hydroxide core–shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction. Inorg. Chem. Front. 2021, 8, 3049–3054.
Kang, T.; Kim, K.; Kim, M.; Kim, J. Electronic structure modulation of nickel hydroxide and tungsten nanoparticles for fast structure transformation and enhanced oxygen evolution reaction activity. Chem. Eng. J. 2021, 418, 129403.
Xu, Q. C.; Jiang, H.; Duan, X. Z.; Jiang, Z.; Hu, Y. J.; Boettcher, S. W.; Zhang, W. Y.; Guo, S. J.; Li, C. Z. Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation. Nano Lett. 2021, 21, 492–499.
Huang, J. W.; Li, Y. Y.; Zhang, Y. D.; Rao, G. F.; Wu, C. Y.; Hu, Y.; Wang, X. F.; Lu, R. F.; Li, Y. R.; Xiong, J. Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 17458–17464.