Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Carbon dots (CDs) have uniquely structural, physicochemical and photochemical properties, suggesting a promising platform for catalysis applications. The in-depth understanding of the structure-activity relationship in the CDs-based catalyst system needs to know the effect of the crystalline core on their catalytic performance. The efficient catalytic oxidation of cyclohexane is an urgent challenge in current chemical industry, in which, adipic acid (AA) plays an important role in industry for synthesis of nylon-6 and nylon-66. Here, we fabricated the pristine CDs by electrochemical etching graphite rod method and derived CDs with high crystalline core (CD-600, CD-800, and CD-1100) through a thermal treatment method in tube furnace. Furthermore, these CDs performed an outstanding catalytic performance for one-step synthesis of AA from cyclohexane. With the help of machine learning (ML), the deep correlations between features (structures of CDs, catalytic conditions) and catalytic performances were investigated by XGBoost (XGB) model. Then under the optimization and prediction of XGB, it was found that high crystalline core preceded the other features and CD-1100 could get the best conversion of 30.696% and selectivity to AA of 92.52% at reaction conditions of 130 °C, 1.5 MPa, and 10 h. This work pioneered the application of ML in industrial issues and demonstrated a comprehensive understanding on CDs as catalyst to realize one-step synthesis of AA.
Xu, L. X.; He, C. H.; Zhu, M. Q.; Fang, S. A highly active Au/Al2O3catalyst for cyclohexane oxidation using molecular oxygen. Catal. Lett. 2007, 114, 202–205.
Zhao, R.; Ji, D.; Lv, G. M.; Qian, G.; Yan, L.; Wang, X. L.; Suo, J. S. A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant. Chem. Commun. 2004, 904–905.
Xiao, Y. P.; Liu, J. C.; Xie, K. H.; Wang, W. B.; Fang, Y. X. Aerobic oxidation of cyclohexane catalyzed by graphene oxide: Effects of surface structure and functionalization. Mol. Catal. 2017, 431, 1–8.
Sun, H.; Blatter, F.; Frei, H. Cyclohexanone from cyclohexane and O2 in a zeolite under visible light with complete selectivity. J. Am. Chem. Soc. 1996, 118, 6873–6879.
Xiao, Y. P.; Liu, J. C.; Mai, J. J.; Pan, C. Q.; Cai, X. L.; Fang, Y. X. High-performance silver nanoparticles coupled with monolayer hydrated tungsten oxide nanosheets: The structural effects in photocatalytic oxidation of cyclohexane. J. Colloid InterfaceSci. 2018, 516, 172–181.
Schuchardt, U.; Pereira, R.; Rufo, M. Iron(III) and copper(II) catalysed cyclohexane oxidation by molecular oxygen in the presence of tert-butyl hydroperoxide. J. Mol. Catal. A:Chem. 1998, 135, 257–262.
Zhou, L. P.; Xu, J.; Miao, H.; Wang, F.; Li, X. Q. Catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone over Co3O4nanocrystals with molecular oxygen. Appl. Catal. A:Gen. 2005, 292, 223–228.
Yuan, H. X.; Xia, Q. H.; Zhan, H. J.; Lu, X. H.; Su, K. X. Catalytic oxidation of cyclohexane to cyclohexanone and cyclohexanol by oxygen in a solvent-free system over metal-containing ZSM-5 catalysts. Appl. Catal. A:Gen. 2006, 304, 178–184.
Dugal, M.; Sankar, G.; Raja, R.; Thomas, J. M. Designing a heterogeneous catalyst for the production of adipic acid by aerial oxidation of cyclohexane. Angew. Chem., Int. Ed. 2000, 39, 2310–2313.
Van de Vyver, S.; Román-Leshkov, Y. Emerging catalytic processes for the production of adipic acid. Catal. Sci. Technol. 2013, 3, 1465–1479.
Shahzeydi, A.; Ghiaci, M.; Farrokhpour, H.; Shahvar, A.; Sun, M. X.; Saraji, M. Facile and green synthesis of copper nanoparticles loaded on the amorphous carbon nitride for the oxidation of cyclohexane. Chem. Eng. J. 2019, 370, 1310–1321.
Lü, G. M.; Ji, D.; Qian, G.; Qi, Y. X.; Wang, X. L.; Suo, J. S. Gold nanoparticles in mesoporous materials showing catalytic selective oxidation cyclohexane using oxygen. Appl. Catal. A:Gen. 2005, 280, 175–180.
Wu, P. P.; Bai, P.; Yan, Z. F.; Zhao, G. X. S. Gold nanoparticles supported on mesoporous silica: Origin of high activity and role of Au NPs in selective oxidation of cyclohexane. Sci. Rep. 2016, 6, 18817.
You, K. Y.; Jian, J.; Xiao, H. J.; Liu, P. L.; Ai, Q. H.; Luo, H. A. Highly selective Co-production of nitrocyclohexane and adipic acid from vapor phase catalytic nitration-oxidation of cyclohexane with NO2. Catal. Commun. 2012, 28, 174–178.
Zhou, W. J.; Wischert, R.; Xue, K.; Zheng, Y. T.; Albela, B.; Bonneviot, L.; Clacens, J. M.; De Campo, F.; Pera-Titus, M.; Wu, P. Highly selective liquid-phase oxidation of cyclohexane to KA oil over Ti-MWW catalyst: Evidence of formation of oxyl radicals. ACS Catal. 2014, 4, 53–62.
Lü, G. M.; Zhao, R.; Qian, G.; Qi, Y. X.; Wang, X. L.; Suo, J. S. A highly efficient catalyst Au/MCM-41 for selective oxidation cyclohexane using oxygen. Catal. Lett. 2004, 97, 115–118.
Sato, K.; Aoki, M.; Noyori, R. A “Green” route to adipic acid: Direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 1998, 281, 1646–1647.
Zhao, R.; Wang, Y. Q.; Guo, Y. L.; Guo, Y.; Liu, X. H.; Zhang, Z. G.; Wang, Y. S.; Zhan, W. C.; Lu, G. Z. A novel Ce/AlPO-5 catalyst for solvent-free liquid phase oxidation of cyclohexane by oxygen. Green Chem. 2006, 8, 459–466.
Vardon, D. R.; Franden, M. A.; Johnson, C. W.; Karp, E. M.; Guarnieri, M. T.; Linger, J. G.; Salm, M. J.; Strathmann, T. J.; Beckham, G. T. Adipicacid production from lignin. Energy Environ. Sci. 2015, 8, 617–628.
Huang, J. W.; Liu, Z. L.; Gao, X. R.; Yang, D.; Peng, X. Y.; Ji, L. N. Hydroxylation of cyclohexane catalyzed by iron(III)-metal-free porphyrin dimer with molecular oxygen: The effect of the steric hindrance and the intramolecular interaction between the two prophyrin rings. J. Mol. Catal. A:Chem. 1998, 111, 261–266.
Yang, X. X.; Wang, H. J.; Li, J.; Zheng, W. X.; Xiang, R.; Tang, Z. K.; Yu, H.; Peng, F. Mechanistic insight into the catalytic oxidation of cyclohexane over carbon nanotubes: Kinetic and in situ spectroscopic evidence. Chem.—Eur. J. 2013, 19, 9818–9824.
Sakthivel, A.; Selvam, P. Mesoporous (Cr)MCM-41: A mild and efficient heterogeneous catalyst for selective oxidation of cyclohexane. J. Catal. 2002, 211, 134–143.
Liu, R. H.; Huang, H.; Li, H. T.; Liu, Y.; Zhong, J.; Li, Y. Y.; Zhang, S.; Kang, Z. H. Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation. ACS Catal. 2014, 4, 328–336.
Ohkubo, K.; Fujimoto, A.; Fukuzumi, S. Metal-free oxygenation of cyclohexane with oxygen catalyzed by 9-mesityl-10-methylacridinium and hydrogen chloride under visible light irradiation. Chem. Commun. 2011, 47, 8515–8517.
Matsumoto, Y.; Kuriyama, M.; Yamamoto, K.; Nishida, K.; Onomura, O. Metal-free synthesis of adipic acid via organocatalytic direct oxidation of cyclohexane under ambient temperature and pressure. Org. Process Res. Dev. 2018, 22, 1312–1317.
Pinto, V. H. A.; Rebouças, J. S.; Ucoski, G. M.; de Faria, E. H.; Ferreira, B. F.; Silva San Gil, R. A.; Nakagaki, S. Mnporphyrins immobilized on non-modified and chloropropyl-functionalized mesoporous silica SBA-15 as catalysts for cyclohexane oxidation. Appl. Catal. A:Gen. 2016, 526, 9–20.
Thomas, J. M.; Raja, R.; Sankar, G.; Bell, R. G. Molecular-sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen. Nature 1999, 398, 227–230.
Zhang, Y. J.; Qi, Y. B.; Yin, Z.; Wang, H.; He, B. Q.; Liang, X. P.; Li, J. X.; Li, Z. H. Nano-V2O5/Ti porous membrane electrode with enhanced electrochemical activity for the high-efficiency oxidation of cyclohexane. Green Chem. 2018, 20, 3944–3953.
Wang, Y.; Zhang, J. S.; Wang, X. C.; Antonietti, M.; Li, H. R. Boron- and fluorine-containing mesoporous carbon nitride polymers: Metal-free catalysts for cyclohexane oxidation. Angew. Chem., Int. Ed. 2010, 49, 3356–3359.
Martins, L. M. D. R. S.; de Almeida, M. P.; Carabineiro, S. A. C.; Figueiredo, J. L.; Pombeiro, A. J. L. Heterogenisation of a C-scorpionateFeIIcomplex on carbon materials for cyclohexane oxidation with hydrogen peroxide. ChemCatChem 2013, 5, 3847–3856.
Yu, J.; Li, X. K.; Wu, Q. Y.; Wang, H.; Liu, Y.; Huang, H.; Liu, Y. L.; Shao, M. W.; Fan, J.; Li, H. T. et al. Effective low-temperature methanol aqueous phase reforming with metal-free carbon Dots/C3N4composites. ACS Appl. Mater. Interfaces 2021, 13, 24702–24709.
Zhao, Y. J.; Liu, Y.; Cao, J. J.; Wang, H.; Shao, M. W.; Huang, H.; Liu, Y.; Kang, Z. H. Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4composite photocatalyst without any sacrificial agent. Appl. Catal. B:Environ. 2020, 278, 119289.
Wang, X.; Wang, H. S.; Zhou, W. F.; Zhang, T. Y.;Huang, H.; Song, Y. L.; Li, Y. Y.; Liu, Y.; Kang, Z. H. Carbon dots with tunable third-order nonlinear coefficient instructed by machine learning. J. Photochem. Photobiol. A:Chem. 2022, 426, 113729.
Zhang, T. Y.; Wang, X.; Wu, Z. Y.; Yang, T. Y.; Zhao, H.; Wang, J. W.; Huang, H.; Liu, Y.; Kang, Z. H. Highly stable and bright blue light-emitting diodes based on carbon dots with a chemically inert surface. Nanoscale Adv. 2021, 3, 6949–6955.
Shi, Y. X.; Wang, Z. B.; Meng, T.; Yuan, T.; Ni, R. H.; Li, Y. C.; Li, X. H.; Zhang, Y.; Tan, Z. A.; Lei, S. B. et al. Red phosphorescent carbon quantum dot organic framework-based electroluminescent light-emitting diodes exceeding 5% external quantum efficiency. J. Am. Chem. Soc. 2021, 143, 18941–18951.
Wang, X.; Bian, W. Y.; Ma, Y. R.; Liu, Y.; Wang, Z. Z.; Shi, C. F.; Lin, H. P.; Liu, Y.; Huang, H.; Kang, Z. H. Hydroxyl-terminated carbon dots for efficient conversion of cyclohexane to adipic acid. J. Colloid InterfaceSci. 2021, 591, 281–289.
Wang, X.; Zhang, X. Y.; Gu, X. Q.; Nie, H. D.; Zhu, M. M.; Wang, B.; Gao, J.; Tao, Y. C.; Zhu, Y. Z.; Huang, H. et al. A bright and stable violet carbon dot light-emitting diode. Adv. Opt. Mater. 2020, 8, 2000239.
Wang, X.; Wang, B.; Wang, H. S.; Zhang, T. Y.; Qi, H. H.; Wu, Z. Y.; Ma, Y. R.; Huang, H.; Shao, M. W.; Liu, Y. et al. Carbon-dot-based white-light-emitting diodes with adjustable correlated color temperature guided by machine learning. Angew. Chem., Int. Ed. 2021, 60, 12585–12590.
Wang, X.; Bai, L.; Shen, L.; Yao, B. W.; Huang, H.; Liu, Y.; Song, Y. L.; Kang, Z. H. Nonlinear optical switching behavior of nitrogen-doped carbon dots. Opt. Mater. 2019, 95, 109216.
Wang, X.; Ma, Y. R.; Wu, Q. Y.; Wang, Z. Z.; Tao, Y. C.; Zhao, Y. J.; Wang, B.; Cao, J. J.; Wang, H.; Gu, X. Q. et al. Ultra-bright and stable pure blue light-emitting diode from O, N Co-doped carbon dots. Laser. PhotonicsRev. 2021, 15, 2000412.
Huo, Z. P.; Xu, W. Q.; Chen, G.; Wang, Z. Z.; Xu, S. P. Surface-state triggered solvatochromism of carbonized polymer dot and its two-photon luminescence. Nano Res. 2022, 15, 2567–2575.
Yuan, F. L.; He, P.; Xi, Z. F.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. Erratum to: Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Res. 2020, 13, 2309–2310.
Yan, F. Y.; Jiang, Y. X.; Sun. X. D.; Wei, J. F.; Chen, L.; Zhang, Y. Y. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res. 2020, 13, 52–60.