AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Conductive photo-thermal responsive bifunctional hydrogel system with self-actuating and self-monitoring abilities

Neng Chen§Yang Zhou§( )Yinping LiuYuanyuan MiSisi ZhaoWang YangSai CheHongchen liuFengJiang ChenChong XuGuang MaXue PengYongfeng Li( )
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China

§ Neng Chen and Yang Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

A dual-functional hydrogel soft actuator is capable of self-actuating with the photothermal response, as well as sensing and monitoring ability with the instantaneous change of surface temperature–bending angle–electron current. What's original is that hydrogels can be adapted to a variety of environments, such as air, water, ice-water mixture, and seawater. More importantly, the soft actuator of imitating a football player and a goalkeeper takes a penalty kick, and the adhesion-photothermally actuator can realize the behavior of debonding.

Abstract

Despite enormous efforts in actuators, most researches are only limited to various actuation behaviors and demonstrations of soft materials. It has not yet been reported to capture and monitor its movement status in an invisible environment. Therefore, it is of great significance to develop a self-sensing and self-actuating dual-function hydrogel actuator system to realize real-time monitoring. Here, we report a bifunctional hydrogel system with self-actuating and self-monitoring abilities, which combines the functions of photothermal actuation and electrical resistance sensing into a single material. The bilayer tough conductive hydrogel synthesized by unconventional complementary concentration recombination and cryogenic freezing technique presents a dense conductive network and high-porosity structure, achieving high toughness at 190.3 kPa of tensile strength, high stretchability (164.3% strain), and the toughness dramatically (1,471.4 kJ·m−3). The working mechanism of the monitoring and self-sensing system is accomplished through the integrated monitoring device of surface temperature–bending angle–electron current, to solve the problem of not apperceiving actuator motion state when encountering obstacles in an invisible environment. We demonstrated for the first time a photothermal actuator’s motion of a football player and goalkeeper to finish the penalty and a soft actuator hand, which can achieve the action of sticking to grab and release under photo-thermal actuation. When connected to the control closed circuit, the actuator realized closed-loop monitoring and sensing feedback. The development of bifunctional hydrogel systems may bring new opportunities and ideas in the fields of material science, circuit technology, sensors, and mechanical engineering.

Electronic Supplementary Material

Video
12274_2022_4394_MOESM1_ESM.mp4
12274_2022_4394_MOESM2_ESM.mp4
12274_2022_4394_MOESM3_ESM.mp4
12274_2022_4394_MOESM4_ESM.mp4
12274_2022_4394_MOESM5_ESM.mp4
Download File(s)
12274_2022_4394_MOESM6_ESM.pdf (3 MB)

References

1

Miriyev, A.; Stack, K.; Lipson, H. Soft material for soft actuators. Nat. Commun. 2017, 8, 596.

2

Tang, W.; Lin, Y. Q.; Zhang, C.; Liang, Y. W.; Wang, J. R.; Wang, W.; Ji, C.; Zhou, M. Y.; Yang, H. Y.; Zou, J. Self-contained soft electrofluidic actuators. Sci. Adv. 2021, 7, eabf8080.

3

Tang, L.; Wang, L.; Yang, X.; Yang, X.; Feng, Y. Y.; Li, Y.; Feng, W. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Prog. Mater. Sci. 2021, 115, 100702.

4

Jiang, T. Y.; Zhao, X. P.; Yin, X. B.; Yang, R. G.; Tan, G. Dynamically adaptive window design with thermo-responsive hydrogel for energy efficiency. Appl. Energy 2021, 287, 116573.

5

Wang, S. C.; Zhou, Y.; Jiang, T. Y.; Yang, R. G.; Tan, G.; Long, Y. Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 2021, 89, 106440.

6

Florea, L. Magnetic movement under the spotlight. Sci. Robot. 2020, 5, eabf1503.

7

Li, C.; Lau, G. C.; Yuan, H.; Aggarwal, A.; Dominguez, V. L.; Liu, S. P.; Sai, H.; Palmer, L. C.; Sather, N. A.; Pearson, T. J. et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci. Robot. 2020, 5, eabb9822.

8

Xiao, S. W.; Yang, Y.; Zhong, M. Q.; Chen, H.; Zhang, Y. X.; Yang, J. T.; Zheng, J. Salt-responsive bilayer hydrogels with pseudo-double-network structure actuated by polyelectrolyte and antipolyelectrolyte effects. ACS Appl. Mater. Interfaces 2017, 9, 20843–20851.

9

Wang, J. R.; Wang, J. F.; Chen, Z.; Fang, S. L.; Zhu, Y.; Baughman, R. H.; Jiang, L. Tunable, fast, robust hydrogel actuators based on evaporation-programmed heterogeneous structures. Chem. Mater. 2017, 29, 9793–9801.

10

Li, M. T.; Wang, X.; Dong, B.; Sitti, M. In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator. Nat. Commun. 2020, 11, 3988.

11

Zhou, L. Y.; Fu, J. Z.; He, Y. A review of 3D printing technologies for soft polymer materials. Adv. Funct. Mater. 2020, 30, 2000187.

12

Huang, C. L.; Lv, J. A.; Tian, X. J.; Wang, Y. C.; Yu, Y. L.; Liu, J. Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Sci. Rep. 2015, 5, 17414.

13

Liang, X. Y.; Chen, G. D.; Lin, S. T.; Zhang, J. J.; Wang, L.; Zhang, P.; Lan, Y.; Liu, J. Bioinspired 2D isotropically fatigue-resistant hydrogels. Adv. Mater. 2022, 34, e2107106.

14

Zhang, Z. H.; Chen, Z. Y.; Wang, Y.; Chi, J. J.; Wang, Y. T.; Zhao, Y. J. Bioinspired bilayer structural color hydrogel actuator with multienvironment responsiveness and survivability. Small Met. 2019, 3, 1900519.

15

Frisenda, R.; Castellanos-Gomez, A. Robotic assembly of artificial nanomaterials. Nat. Nanotechnol. 2018, 13, 441–442.

16

Yang, X. F.; Chang, L. L.; Pérez-Arancibia, N. O. An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle. Sci. Robot. 2020, 5, eaba0015.

17
Bilodeau, R. A. ; White, E. L. ; Kramer, R. K. Monolithic fabrication of sensors and actuators in a soft robotic gripper. In2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, 2015, pp 2324–2329.
18

Zhao, H. C.; O’Brien, K.; Li, S.; Shepherd, R. F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 2016, 1, eaai7529.

19

Truby, R. L.; Wehner, M.; Grosskopf, A. K.; Vogt, D. M.; Uzel, S. G. M.; Wood, R. J.; Lewis, J. A. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 2018, 30, 1706383.

20

Wang, H. B.; Totaro, M.; Beccai, L. Toward perceptive soft robots: Progress and challenges. Adv. Sci. 2018, 5, 1800541.

21

Chen, N.; Meng, Z. H.; Wang, R.; Cai, S. C.; Guo, W. B.; Tang, H. L. Bimetal–organic framework-derived carbon nanocubes with 3D hierarchical pores as highly efficient oxygen reduction reaction electrocatalysts for microbial fuel cells. Sci. China Mater. 2021, 64, 2926–2937.

22

Lv, P. F.; Yang, X.; Bisoyi, H. K.; Zeng, H.; Zhang, X.; Chen, Y. H.; Xue, P.; Shi, S. K.; Priimagi, A.; Wang, L. et al. Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics. Mater. Horiz. 2021, 8, 2475–2484.

23

Yang, X.; Chen, Y. H.; Zhang, X.; Xue, P.; Lv, P. F.; Yang, Y. Z.; Wang, L.; Feng, W. Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods. Nano Today 2022, 43, 101419.

24

Ma, J. Z.; Yang, Y. Z.; Valenzuela, C.; Zhang, X.; Wang, L.; Feng, W. Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angew. Chem., Int. Ed. 2022, 61, e202116219.

25

Yang, J. J.; Zhang, X. F.; Zhang, X.; Wang, L.; Feng, W.; Li, Q. Beyond the visible: Bioinspired infrared adaptive materials. Adv. Mater. 2021, 33, 2004754.

26

Lv, P. F.; Lu, X. M.; Wang, L.; Feng, W. Nanocellulose-based functional materials: From Chiral photonics to soft actuator and energy storage. Adv. Funct. Mater. 2021, 31, 2104991.

27

Cai, G. F.; Wang, J. X.; Qian, K.; Chen, J. W.; Li, S. H.; Lee, P. S. Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. 2017, 4, 1600190.

28

Ling, Y.; Pang, W. B.; Li, X. P.; Goswami, S.; Xu, Z.; Stroman, D.; Liu, Y. C.; Fei, Q. H.; Xu, Y. D.; Zhao, G. G. et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-soft actuators interaction. Adv. Mater. 2020, 32, 1908475.

29

Huang, J. H.; Zhao, L.; Wang, T.; Sun, W. X.; Tong, Z. NIR-triggered rapid shape memory PAM-GO-gelatin hydrogels with high mechanical strength. ACS Appl. Mater. Interfaces 2016, 8, 12384–12392.

30

Li, L.; Xu, J. C.; Li, G. H.; Jia, X. L.; Li, Y. F.; Yang, F.; Zhang, L. Q.; Xu, C. M.; Gao, J. S.; Liu, Y. et al. Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation. Chem. Eng. J. 2016, 284, 78–84.

31

Chen, Z.; Miao, H. D.; Wu, J. Y.; Tang, Y. S.; Yang, W.; Hou, L. Q.; Yang, F.; Tian, X. J.; Zhang, L. Q.; Li, Y. F. Scalable production of hydrophilic graphene nanosheets via in situ ball-milling-assisted supercritical CO2 exfoliation. Ind. Eng. Chem. Res. 2017, 56, 6939–6944.

32

Zhou, Y.; Wan, C. J.; Yang, Y. S.; Yang, H.; Wang, S. C.; Dai, Z. D.; Ji, K. J.; Jiang, H.; Chen, X. D.; Long, Y. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 2019, 29, 1806220.

33

Strandman, S.; Zhu, X. X. Thermo-responsive block copolymers with multiple phase transition temperatures in aqueous solutions. Prog. Polym. Sci. 2015, 42, 154–176.

34

Mishra, A. K.; Wallin, T. J.; Pan, W. Y.; Xu, P.; Wang, K. Y.; Giannelis, E. P.; Mazzolai, B.; Shepherd, R. F. Autonomic perspiration in 3D-printed hydrogel actuators. Sci. Robot. 2020, 5, eaaz3918.

35

Zhao, Y. S.; Xuan, C.; Qian, X. S.; Alsaid, Y.; Hua, M. T.; Jin, L. H.; He, X. M. Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Robot. 2019, 4, eaax7112.

36

Gao, Z.; Zhu, J. D.; Rajabpour, S.; Joshi, K.; Kowalik, M.; Croom, B.; Schwab, Y.; Zhang, L. W.; Bumgardner, C.; Brown, K. R. et al. Graphene reinforced carbon fibers. Sci. Adv. 2020, 6, eaaz4191.

37

Choi, Y. H.; Hwang, J. S.; Han, S. H.; Lee C. S.; Jeon, S. J.; Kim, S. H. Thermo-responsive microcapsules with tunable molecular permeability for controlled encapsulation and release. Adv. Funct. Mater. 2021, 31, 2100782.

38

Yang, L. L.; Chang, L. F.; Hu, Y.; Huang, M. J.; Ji, Q. X.; Lu, P.; Liu, J. Q.; Chen, W.; Wu, Y. C. An autonomous soft actuator with light-driven self-sustained wavelike oscillation for phototactic self-locomotion and power generation. Adv. Funct. Mater. 2020, 30, 1908842.

39

Jiang, Z.; Tan, M. L.; Taheri, M.; Yan, Q.; Tsuzuki, T.; Gardiner, M. G.; Diggle, B.; Connal, L. A. Strong, self-healable, and recyclable visible-light-responsive hydrogel actuators. Angew. Chem., Int. Ed. 2020, 132, 7115–7122.

40

Xue, P.; Bisoyi, H. K.; Chen, Y. H.; Zeng, H.; Yang, J. J.; Yang, X.; Lv, P. F.; Zhang, X. M.; Priimagi, A.; Wang, L. et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem., Int. Ed. 2021, 60, 3390–3396.

41

Apsite, I.; Biswas, A.; Li, Y. Q.; Ionov, L. Microfabrication using shape-transforming soft materials. Adv. Funct. Mater. 2020, 30, 1908028.

42

Zeng, H.; Lahikainen, M.; Liu, L.; Ahmed, Z.; Wani, O. M.; Wang, M.; Yang, H.; Priimagi, A. Light-fuelled freestyle self-oscillators. Nat. Commun. 2019, 10, 5057.

43

Kim, H.; Kang, J. H.; Zhou, Y.; Kuenstler, A. S.; Kim, Y.; Chen, C.; Emrick, T.; Hayward, R. C. Light-driven shape morphing, assembly, and motion of nanocomposite gel surfers. Adv. Mater. 2019, 31, 1900932.

44

Downs, F. G.; Lunn, D. J.; Booth, M. J.; Sauer, J. B.; Ramsay, W. J.; Klemperer, R. G.; Hawker, C. J.; Bayley, H. Multi-responsive hydrogel structures from patterned droplet networks. Nat. Chem. 2020, 12, 363–371.

45

Ren, L.; Xu, X.; Du, Y.; Kalantar-Zadeh, K.; Dou, S. X. Liquid metals and their hybrids as stimulus–responsive smart materials. Mater. Today 2020, 34, 92–114.

46

Roels, E.; Terryn, S.; Iida, F.; Bosman, A. W.; Norvez, S.; Clemens, F.; Assche, G. V.; Vanderborght, B.; Brancart, J. Processing of self-healing polymers for soft robotics. Adv. Mater. 2022, 34, 2104798.

47

Johnson, J. S.; Spakowicz, D. J.; Hong, B. Y.; Petersen, L. M.; Demkowicz, P.; Chen, L.; Leopold, S. R.; Hanson, B. M.; Agresta, H. O.; Gerstein, M. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029.

48

Gkikas, M.; Avery, R. K.; Mills, C. E.; Nagarajan, R.; Wilusz, E.; Olsen, B. D. Hydrogels that actuate selectively in response to organophosphates. Adv. Funct. Mater. 2017, 27, 1602784.

49

Xiang, S. L.; Su, Y. X.; Yin, H.; Li, C.; Zhu, M. Q. Visible-light-driven isotropic hydrogels as anisotropic underwater actuators. Nano Energy 2021, 85, 105965.

50

Le, X. X.; Lu, W.; Zhang, J. W.; Chen, T. Recent progress in biomimetic anisotropic hydrogel actuators. Adv. Sci. 2019, 6, 1801584.

51

Xue, F. H.; Zheng, H. W.; Peng, Q. Y.; Hu, Y.; Zhao, X.; Xu, L. L.; Li, P. Y.; Zhu, Y.; Liu, Z. L.; He, X. D. An ultra-broad-range pressure sensor based on a gradient stiffness design. Mater. Horiz. 2021, 8, 2260–2272.

52

Su, X.; Luo, Y.; Tian, Z. L.; Yuan, Z. Y.; Han, Y. M.; Dong, R. F.; Xu, L.; Feng, Y. T.; Liu, X. Z.; Huang, J. Y. Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces. Mater. Horiz. 2020, 7, 2651–2661.

53

Nguyen, V. H.; Tabassian, R.; Oh, S.; Nam, S.; Mahato, M.; Thangasamy, P.; Rajabi-Abhari, A.; Hwang, W. J.; Taseer, A. K.; Oh, I. K. Stimuli-responsive MXene-based actuators. Adv. Funct. Mater. 2020, 30, 1909504.

54

Han, B.; Gao, Y. Y.; Zhang, Y. L.; Liu, Y. Q.; Ma, Z. C.; Guo, Q.; Zhu, L.; Chen, Q. D.; Sun, H. B. Multi-field-coupling energy conversion for flexible manipulation of graphene-based soft robots. Nano Energy 2020, 71, 104578.

Nano Research
Pages 7703-7712
Cite this article:
Chen N, Zhou Y, Liu Y, et al. Conductive photo-thermal responsive bifunctional hydrogel system with self-actuating and self-monitoring abilities. Nano Research, 2022, 15(8): 7703-7712. https://doi.org/10.1007/s12274-022-4394-3
Topics:

1232

Views

21

Crossref

19

Web of Science

18

Scopus

3

CSCD

Altmetrics

Received: 01 February 2022
Revised: 20 March 2022
Accepted: 04 April 2022
Published: 23 May 2022
© Tsinghua University Press 2022
Return