Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Using fewer catalysts to promote the chemical conversion of more substrates is the dream synthesis pursued by synthetic chemists. Achieving highly selective reactions using trace amounts (< 1 ppm) of catalysts is rare and has undoubted practical value. Herein, we designed and synthesized a single-atom Pd-metalated porous organic ligand polymer, denoted as Pd1@POL, and used the polymer to realize the regioselective hydrosilylation of allenes (Pd loading was as low as 0.98 ppm). The synergistic effect of the dispersed catalytic active sites in the catalyst and supports with ligand regulation function can directionally realize the formation of specifically configured hydrosilylation products. The as-fabricated single-atom catalyst (SAC; i.e., Pd1@POL-5) showed an amazing catalytic efficiency and selectivity for hydrosilylation of allene (turnover number was up to 772,358, which was 200 times higher than previously recorded, and regioselectivity > 100:1). The catalyst could be recycled numerous times in a continuous flow system without reductions in activity and selectivity. This work demonstrated the application prospect of the SAC in the synthesis of complex organic compounds and trace amount catalysis, which can lay the foundation for its large-scale and industrialized application in drug synthesis and other fields.
Thomé, I.; Nijs, A.; Bolm, C. Trace metal impurities in catalysis. Chem. Soc. Rev. 2012, 41, 979–987.
Liu, K. R.; Badamdorj, B.; Yang, F.; Janik, M. J.; Antonietti, M. Accelerated anti-markovnikov alkene hydrosilylation with humic-acid-supported electron-deficient platinum single atoms. Angew. Chem., Int. Ed. 2021, 60, 24220–24226.
Ziegler, K. Aluminium-organische synthese im bereich olefinischer kohlenwasserstoffe. Angew. Chem. 1952, 64, 323–329.
Huss, A. Jr. ; Lim, P. K. ; Eckert, C. A. The “uncatalyzed” oxidation of sulfur(IV) in aqueous solutions. J. Am. Chem. Soc. 1978, 100, 6252–6253.
Uri, N. Inorganic free radicals in solution. Chem. Rev. 1952, 50, 375–454.
Li, L. L.; Chang, X.; Lin, X. Y.; Zhao, Z. J.; Gong, J. L. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178.
Nørskov, J. K.; Bligaard, T.; Hvolbæk, B.; Abild-Pedersen, F.; Chorkendorff, I.; Christensen, C. H. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 2008, 37, 2163–2171.
Rana, S.; Biswas, J. P.; Paul, S.; Paik, A.; Maiti, D. Organic synthesis with the most abundant transition metal-iron: From rust to multitasking catalysts. Chem. Soc. Rev. 2021, 50, 243–472.
Etim, U. J.; Xu, B.; Bai, P.; Ullah, R.; Subhan, F.; Yan, Z. Role of nickel on vanadium poisoned FCC catalyst: A study of physiochemical properties. J. Energy Chem. 2016, 25, 667–676.
Arora, P.; Abdolahi, H.; Cheah, Y. W.; Salam, M. A.; Grennfelt, E. L.; Rådberg, H.; Creaser, D.; Olsson, L. The role of catalyst poisons during hydrodeoxygenation of renewable oils. Catal. Today 2021, 367, 28–42.
de Almeida, L. D.; Wang, H. L.; Junge, K.; Cui, X. J.; Beller, M. Recent advances in catalytic hydrosilylations: Developments beyond traditional platinum catalysts. Angew. Chem., Int. Ed. 2021, 60, 550–565.
Miller, Z. D.; Montgomery, J. Regioselective allene hydroarylation via one-pot allene hydrosilylation/Pd-catalyzed cross-coupling. Org. Lett. 2014, 16, 5486–5489.
Wen, H. N.; Liu, G. X.; Huang, Z. Recent advances in tridentate iron and cobalt complexes for alkene and alkyne hydrofunctionalizations. Coord. Chem. Rev. 2019, 386, 138–153.
Cheng, B.; Lu, P.; Zhang, H. Y.; Cheng, X. P.; Lu, Z. Highly enantioselective cobalt-catalyzed hydrosilylation of alkenes. J. Am. Chem. Soc. 2017, 139, 9439–9442.
Ren, S. C.; Ye, B. C.; Li, S. Y.; Pang, L. P.; Pan, Y. M.; Tang, H. T. Well-defined coordination environment breaks the bottleneck of organic synthesis: Single-atom palladium catalyzed hydrosilylation of internal alkynes. Nano Res. 2022, 15, 1500–1508.
Sarma, B. B.; Kim, J.; Amsler, J.; Agostini, G.; Weidenthaler, C.; Pfänder, N.; Arenal, R.; Concepción, P.; Plessow, P.; Studt, F. et al. One-pot cooperation of single-atom Rh and Ru solid catalysts for a selective tandem olefin isomerization-hydrosilylation process. Angew. Chem., Int. Ed. 2020, 59, 5806–5815.
Blieck, R.; Taillefer, M.; Monnier, F. Metal-catalyzed intermolecular hydrofunctionalization of allenes: Easy access to allylic structures via the selective formation of C–N, C–C, and C–O bonds. Chem. Rev. 2020, 120, 13545–13598.
Yang, B.; Qiu, Y. A.; Bäckvall, J. E. Control of selectivity in palladium(II)-catalyzed oxidative transformations of allenes. Acc. Chem. Res. 2018, 51, 1520–1531.
Liu, L.; Ward, R. M.; Schomaker, J. M. Mechanistic aspects and synthetic applications of radical additions to allenes. Chem. Rev. 2019, 119, 12422–12490.
Wang, C.; Teo, W. J.; Ge, S. Z. Access to stereodefined (Z)-allylsilanes and (Z)-allylic alcohols via cobalt-catalyzed regioselective hydrosilylation of allenes. Nat. Commun. 2017, 8, 2258.
Asako, S.; Ishikawa, S.; Takai, K. Synthesis of linear allylsilanes via molybdenum-catalyzed regioselective hydrosilylation of allenes. ACS Catal. 2016, 6, 3387–3395.
Yang, Z.; Peng, D. J.; Du, X. Y.; Huang, Z.; Ma, S. M. Identifying a cobalt catalyst for highly selective hydrosilylation of allenes. Org. Chem. Front. 2017, 4, 1829–1832.
Miller, Z. D.; Dorel, R.; Montgomery, J. Regiodivergent and stereoselective hydrosilylation of 1,3-disubstituted allenes. Angew. Chem., Int. Ed. 2015, 54, 9088–9091.
Miller, Z. D.; Li, W.; Belderrain, T. R.; Montgomery, J. Regioselective allene hydrosilylation catalyzed by N-heterocyclic carbene complexes of nickel and palladium. J. Am. Chem. Soc. 2013, 135, 15282–15285.
Chen, J. J.; Zeng, J. H.; Yang, Y.; Liu, Z. K.; Jiang, Y. N.; Li, M. R.; Chen, L.; Zhan, Z. P. A bithiophene-promoted ppm levels of palladium-catalyzed regioselective hydrosilylation of terminal allenes. Adv. Synth. Catal. 2020, 362, 2360–2366.
Jiang, Y. N.; Zeng, J. H.; Yang, Y.; Liu, Z. K.; Chen, J. J.; Li, D. C.; Chen, L.; Zhan, Z. P. A conjugated microporous polymer as a recyclable heterogeneous ligand for highly efficient regioselective hydrosilylation of allenes. Chem. Commun. 2020, 56, 1597–1600.
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.
Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.
Mitchell, S.; Pérez-Ramírez, J. Single atom catalysis: A decade of stunning progress and the promise for a bright future. Nat. Commun. 2020, 11, 4302.
Li, W. H.; Yang, J. R.; Jing, H. Y.; Zhang, J.; Wang, Y.; Li, J.; Zhao, J.; Wang, D. S.; Li, Y. D. Creating high regioselectivity by electronic metal-support interaction of a single-atomic-site catalyst. J. Am. Chem. Soc. 2021, 143, 15453–15461.
Lin, L. H.; Chen, Z.; Chen, W. X. Single atom catalysts by atomic diffusion strategy. Nano Res. 2021, 14, 4398–4416.
Chen, Z. X.; Liu, C. B.; Liu, J.; Li, J.; Xi, S. B.; Chi, X.; Xu, H. S.; Park, I. H.; Peng, X. W.; Li, X. et al. Cobalt single-atom-intercalated molybdenum disulfide for sulfide oxidation with exceptional chemoselectivity. Adv. Mater. 2020, 32, 1906437.
Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.
Gao, P.; Liang, G. F.; Ru, T.; Liu, X. Y.; Qi, H. F.; Wang, A. Q.; Chen, F. E. Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nat. Commun. 2021, 12, 4698.
Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheng, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.
Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D.; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 2021, 4, 523–531.
Sun, Q.; Dai, Z. F.; Liu, X. L.; Sheng, N.; Deng, F.; Meng, X. J.; Xiao, F. S. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: Synergistic effect of high ligand concentration and flexible framework. J. Am. Chem. Soc. 2015, 137, 5204–5209.
Huang, W. Y.; Wang, G. Q.; Li, W. H.; Li, T. T.; Ji, G. J.; Ren, S. C.; Jiang, M.; Yan, L.; Tang, H. T.; Pan, Y. M. et al. Porous ligand creates new reaction route: Bifunctional single-atom palladium catalyst for selective distannylation of terminal alkynes. Chem 2020, 6, 2300–2313.
Liu, L. C.; Corma, A. Identification of the active sites in supported subnanometric metal catalysts. Nat. Catal. 2021, 4, 453–456.
Mitchell, S.; Pérez-Ramírez, J. Atomically precise control in the design of low-nuclearity supported metal catalysts. Nat. Rev. Mater. 2021, 6, 969–985.
Ding, S. P.; Hülsey, M. J.; An, H.; He, Q.; Asakura, H.; Gao, M.; Hasegawa, J. Y.; Tanaka, T.; Yan, N. Ionic liquid-stabilized single-atom Rh catalyst against leaching. CCS Chem. 2021, 3, 1814–1822.
Wang, H. W.; Lu, J. L. A review on particle size effect in metal-catalyzed heterogeneous reactions. Chin. J. Chem. 2020, 38, 1422–1444.
Liu, L. C.; Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 2021, 6, 244–263.
Xu, X.; Li, Y.; Gong, Y. T.; Zhang, P. F.; Li, H. R.; Wang, Y. Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J. Am. Chem. Soc. 2012, 134, 16987–16990.
Holman, K. R.; Stanko, A. M.; Reisman, S. E. Palladium-catalyzed cascade cyclizations involving C–C and C–X bond formation: Strategic applications in natural product synthesis. Chem. Soc. Rev. 2021, 50, 7891–7908.
Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.
Hussain, A.; Arif, S. M.; Aslam, M. Emerging renewable and sustainable energy technologies: State of the art. Renew. Sust. Energy Rev. 2017, 71, 12–28.
Murugavel, R.; Voigt, A.; Walawalkar, M. G.; Roesky, H. W. Hetero-and metallasiloxanes derived from silanediols, disilanols, silanetriols, and trisilanols. Chem. Rev. 1996, 96, 2205–2236.
Fleming, I.; Barbero, A.; Walter, D. Stereochemical control in organic synthesis using silicon-containing compounds. Chem. Rev. 1997, 97, 2063–2192.
Wu, H.; Du, X. L.; Meng, X. H.; Qiu, D.; Qiao, Y. A three-tiered colloidosomal microreactor for continuous flow catalysis. Nat. Commun. 2021, 12, 6113.
Zhao, Y. F.; Zhou, H.; Zhu, X. R.; Qu, Y. T.; Xiong, C.; Xue, Z. G.; Zhang, Q. W.; Liu, X. K.; Zhou, F. Y.; Mou, X. M. et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal. 2021, 4, 134–143.
Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S. D. A.; Noël, T. Technological innovations in photochemistry for organic synthesis: Flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry. Chem. Rev. 2022, 122, 2752–2906.
Sagmeister, P.; Lebl, R.; Castillo, I.; Rehrl, J.; Kruisz, J.; Sipek, M.; Horn, M.; Sacher, S.; Cantillo, D.; Williams, J. D. et al. Advanced real-time process analytics for multistep synthesis in continuous flow. Angew. Chem., Int. Ed. 2021, 60, 8139–8148.