AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Novel metastable Bi:Co and Bi:Fe alloys nanodots@carbon as anodes for high rate K-ion batteries

Zhongqiu Tong1,2,3Tianxing Kang2,3Yan Wu2,3Fan Zhang4Yongbing Tang4( )Chun-Sing Lee2,3( )
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong 999077, China
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Show Author Information

Graphical Abstract

New metastable Bi:Co and Bi:Fe alloys nanodots@carbon structures are synthesized by annealing metal-organic frameworks (MOF) precursors. A Bi0.83Fe0.17@C electrode delivers superior 253 mAh·g−1 at 20 A·g−1 and stable cycling performance at 2 A·g−1 for 1,000 cycles.

Abstract

Bi is a promising anode material for potassium-ion batteries (PIBs) due to its high theoretical capacity. However, severe pulverization upon cycling limits its practical applications. In this work, we propose a new approach of using metastable alloys with Bi elements. Metastable Bi:Co and Bi:Fe alloys nanodots@carbon anode materials (Bi:Co and Bi:Fe@C) are synthesized for the first time via simple annealing of their metal-organic frameworks (MOF) precursors. These prepared materials are demonstrated as ideal hosts for high-rate K-ion storage. Bi0.85Co0.15@C and Bi0.83Fe0.17@C electrodes respectively deliver superior 178 and 253 mAh·g−1 at 20 A·g−1, as well as stable cycling performance at 2 A·g−1. Ex situ scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) studies on Bi:Co@C indicate that the elemental Co separates out during the initial potassiation and stands during the following discharge/charge cycles. In situ formed Co precipitates can act as (1) “conductive binders” as well as (2) “separators” to prevent the severe aggregation of adjacent active elemental Bi nanoparticles and (3) accelerate the potassiation/de-potassiation kinetics in elemental Bi precipitates after initial discharge/charge cycles. This work could inspire the development of metal-type anodes.

Electronic Supplementary Material

Download File(s)
12274_2022_4398_MOESM1_ESM.pdf (1.6 MB)

References

1

Zhao, S. Q.; Guo, Z. Q.; Yan, K.; Guo, X.; Wan, S. W.; He, F. R.; Sun, B.; Wang, G. X. The rise of Prussian blue analogs: Challenges and opportunities for high-performance cathode materials in potassium-ion batteries. Small Struct. 2021, 2, 2000054.

2

Wang, H. G.; Wang, H. D.; Si, Z. J.; Li, Q.; Wu, Q.; Shao, Q.; Wu, L. L.; Liu, Y.; Wang, Y. H.; Song, S. et al. A bipolar and self-polymerized phthalocyanine complex for fast and tunable energy storage in dual-ion batteries. Angew. Chem., Int. Ed. 2019, 131, 10310–10314.

3

Wang, H. G.; Wu, Q.; Wang, Y. H.; Wang, X.; Wu, L. L.; Song, S. Y.; Zhang, H. J. Molecular engineering of monodisperse SnO2 nanocrystals anchored on doped graphene with high-performance lithium/sodium-storage properties in half/full cells. Adv. Energy Mater. 2019, 9, 1802993.

4

Huang, H. W.; Wang, J. W.; Yang, X. F.; Hu, R. Z.; Liu, J. L.; Zhang, L.; Zhu, M. Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in situ TEM. Angew. Chem., Int. Ed. 2020, 132, 14612–14618.

5

Zhang, X. D.; Yue, F. S.; Liang, J. Y.; Shi, J. L.; Li, H.; Guo, Y. G. Structure design of cathode electrodes for solid-state batteries: Challenges and progress. Small Struct. 2020, 1, 2000042.

6

Xu, D.; Chen, L.; Su, X. Z.; Jiang, H. L.; Lian, C.; Liu, H. L.; Chen, L.; Hu, Y. J.; Jiang, H.; Li, C. Z. Heterogeneous MoSe2/nitrogen-doped-carbon nanoarrays: Engineering atomic interface for potassium-ion storage. Adv. Funct. Mater. 2022, 32, 2110223.

7

Hu, C.; Ma, K.; Hu, Y. J.; Chen, A.; Saha, P.; Jiang, H.; Li, C. Z. Confining MoS2 nanocrystals in MOF-derived carbon for high performance lithium and potassium storage. Green Energy Environ. 2021, 6, 75–82.

8

Song, K. M.; Liu, C. T.; Mi, L. W.; Chou, S. L.; Chen, W. H.; Shen, C. Y. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 2021, 17, 1903194.

9

Heligman, B. T.; Kreder, K. J.; Manthiram, A. Zn-Sn interdigitated eutectic alloy anodes with high volumetric capacity for lithium-ion batteries. Joule 2019, 3, 1051–1063.

10

Chen, K. T.; Tuan, H. Y. Bi-Sb nanocrystals embedded in phosphorus as high-performance potassium ion battery electrodes. ACS Nano 2020, 14, 11648–11661.

11

Wang, J.; Fan, L.; Liu, Z. M.; Chen, S. H.; Zhang, Q. F.; Wang, L. L.; Yang, H. G.; Yu, X. Z.; Lu, B. G. In situ alloying strategy for exceptional potassium ion batteries. ACS Nano 2019, 13, 3703–3713.

12

Wang, S. H.; Yi, Z.; Wang, X. X.; Sun, Q. J.; Cheng, Y.; Wang, L. M. A rational design to buffer volume expansion of CoSn intermetallic in lithium and sodium storage: Multicore-shell versus monocore-shell. Energy Storage Mater. 2019, 23, 629–635.

13

Gao, H.; Guo, X.; Wang, S. J.; Zhang, F.; Liu, H.; Wang, G. X. Antimony-based nanomaterials for high-performance potassium-ion batteries. EcoMat 2020, 2, e12027.

14

Xu, J. Y.; Lai, C. L.; Duan, L. P.; Zhang, Y. X.; Xu, Y. F.; Bao, J. C.; Zhou, X. S. Anchoring ultrafine CoP and CoSb nanoparticles into rich N-doped carbon nanofibers for efficient potassium storage. Sci. China Mater. 2022, 65, 43–50.

15

Imtiaz, S.; Amiinu, I. S.; Xu, Y.; Kennedy, T.; Blackman, C.; Ryan, K. M. Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Mater. Today 2021, 48, 241–269.

16

Raabe, D.; Li, Z. M.; Ponge, D. Metastability alloy design. MRS Bull. 2019, 44, 266–272.

17

Tan, H. T.; Chen, D.; Rui, X. H.; Yu, Y. Peering into alloy anodes for sodium-ion batteries: Current trends, challenges, and opportunities. Adv. Funct. Mater. 2019, 29, 1808745.

18

Li, B.; Shang, S. L.; Zhao, J. W.; Itkis, D. M.; Jiao, X. X.; Zhang, C. F.; Liu, Z. K.; Song, J. X. Metastable trigonal SnP: A promising anode material for potassium-ion battery. Carbon 2020, 168, 468–474.

19

Gabaudan, V.; Berthelot, R.; Stievano, L.; Monconduit, L. Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries. J. Phys. Chem. C 2018, 122, 18266–18273.

20

Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 4687–4691.

21

Jiao, T. P.; Wu, S. L.; Cheng, J. Y.; Chen, D.; Shen, D.; Wang, H.; Tong, Z. Q.; Li, H.; Liu, B.; Kai, J. J. et al. Bismuth nanorod networks confined in a robust carbon matrix as long-cycling and high-rate potassium-ion battery anodes. J. Mater. Chem. A 2020, 8, 8440–8446.

22

Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium-and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.

23

Sun, X. P.; Zhang, B.; Chen, M.; Wang, L.; Wang, D. B.; Man, R. X.; Iqbal, S.; Tian, F.; Qian, Y. T.; Xu, L. Q. Space-confined growth of Bi2Se3 nanosheets encapsulated in N-doped carbon shell lollipop-like composite for full/half potassium-ion and lithium-ion batteries. Nano Today 2022, 43, 101408.

24

Tong, Z. Q.; Yang, R.; Wu, S. L.; Shen, D.; Jiao, T. P.; Zhang, K. L.; Zhang, W. J.; Lee, C. S. Defect-engineered vanadium trioxide nanofiber bundle@graphene hybrids for high-performance all-vanadate Na-ion and K-ion full batteries. J. Mater. Chem. A 2019, 7, 19581–19588.

25

Su, S. L.; Liu, Q.; Wang, J.; Fan, L.; Ma, R. F.; Chen, S. H.; Han, X.; Lu, B. G. Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 22474–22480.

26

Cheng, X. L.; Li, D. J.; Wu, Y.; Xu, R.; Yu, Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4913–4921.

27

Zhang, R. D.; Bao, J. Z.; Wang, Y. H.; Sun, C. F. Concentrated electrolytes stabilize bismuth-potassium batteries. Chem. Sci. 2018, 9, 6193–6198.

28

Zhang, W. C.; Mao, J. F.; Li, S. A.; Chen, Z. X.; Guo, Z. P. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316–3319.

29

Wang, H.; Wu, X.; Qi, X. J.; Zhao, W.; Ju, Z. C. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater. Res. Bull. 2018, 103, 32–37.

30

Zhang, W. C.; Pang, W. K.; Sencadas, V.; Guo, Z. P. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2018, 2, 1534–1547.

31

Wang, L. P.; Yang, J. Y.; Li, J.; Chen, T.; Chen, S. L.; Wu, Z. R.; Qiu, J. L.; Wang, B. J.; Gao, P.; Niu X. et al. Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. J. Power Sources 2019, 409, 24–30.

32

Wang, W.; Zhou, J. H.; Wang, Z. P.; Zhao, L. Y.; Li, P. H.; Yang, Y.; Yang, C.; Huang H. X.; Guo, S. J. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018, 8, 1701648.

33

Tong, Z. Q.; Yang, R.; Wu, S. L.; Shen, D.; Jiao, T. P.; Zhang, K. L.; Zhang, W. J.; Lee, C. S. Surface-engineered black niobium Oxide@Graphene nanosheets for high-performance sodium-/potassium-ion full batteries. Small 2019, 15, 1901272.

34

Wang, X.; Qian, K.; Chen, X. Y.; Sun, X. L.; Guo, C.; Li, J. F. In situ perfusing Sb particles into porous N-doped carbon microspheres and their electrochemical properties in potassium ion batteries. J. Alloys Compd. 2022, 906, 164263.

35

Tong, Z. Q.; Kang, T. X.; Wan, Y. P.; Yang, R.; Wu, Y.; Shen, D.; Liu, S. H.; Tang, Y. B.; Lee, C. S. A Ca-ion electrochromic battery via a water-in-salt electrolyte. Adv. Funct. Mater. 2021, 31, 2104639.

36

Tong, Z. Q.; Hao, J.; Zhang, K.; Zhao, J. P.; Su, B. L.; Li, Y. Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films. J. Mater. Chem. C 2014, 2, 3651–3658.

37

Tong, Z. Q.; Tian, S.; Wang, H.; Shen, D.; Yang R.; Lee, C. S. Tailored redox kinetics, electronic structures and electrode/electrolyte interfaces for fast and high energy-density potassium-organic battery. Adv. Funct. Mater. 2020, 30, 1907656.

Nano Research
Pages 7220-7226
Cite this article:
Tong Z, Kang T, Wu Y, et al. Novel metastable Bi:Co and Bi:Fe alloys nanodots@carbon as anodes for high rate K-ion batteries. Nano Research, 2022, 15(8): 7220-7226. https://doi.org/10.1007/s12274-022-4398-z
Topics:

848

Views

16

Crossref

18

Web of Science

17

Scopus

1

CSCD

Altmetrics

Received: 17 March 2022
Revised: 31 March 2022
Accepted: 04 April 2022
Published: 20 May 2022
© Tsinghua University Press 2022
Return