Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Antisense oligonucleotide (ASO) for anti-apoptosis is emerging as a highly promising therapeutic agents for ischemic stroke with complex pathological environment. However, its therapeutic efficacy is seriously limited by a number of challenges including inefficient internalization, low blood-brain barrier (BBB) penetration, poor stability, and potential toxicity of the carrier. Herein, a carrier-free programmed spherical nucleic acid nanostructure is developed for effective ischemic stroke therapy via integrating multifunctional modules into one DNA structure. By co-encoding caspase-3-ASO and transferrin receptor (TfR) aptamer into circle template, the spherical nucleic acid nanostructure (TD) was obtained via self-assembly. The experimental results demonstrated that the developed TD displayed efficient BBB penetration capability (6.4 times) and satisfactory caspase-3 silence effect (2.3 times) due to the dense DNA packaging in TD. Taken together, our study demonstrated that the carrier-free programmed spherical nucleic acid nanostructure could significantly improve the therapeutic efficacy of ischemic stroke and was a promising therapeutic tool for various brain damage-related diseases.
Li, S. Y.; Jiang, D. W.; Ehlerding, E. B.; Rosenkrans, Z. T.; Engle, J. W.; Wang, Y.; Liu, H. S.; Ni, D. L.; Cai, W. B. Intrathecal administration of nanoclusters for protecting neurons against oxidative stress in cerebral ischemia/reperfusion injury. ACS Nano 2019, 13, 13382–13389.
Li, M. X.; Li, J.; Chen, J. P.; Liu, Y.; Cheng, X.; Yang, F.; Gu, N. Platelet membrane biomimetic magnetic nanocarriers for targeted delivery and in situ generation of nitric oxide in early ischemic stroke. ACS Nano 2020, 14, 2024–2035.
Li, C.; Sun, T.; Jiang, C. Recent advances in nanomedicines for the treatment of ischemic stroke. Acta Pharm. Sin. B 2021, 11, 1767–1788.
Wang, C. X.; Lin, G.; Luan, Y.; Ding, J.; Li, P. C.; Zhao, Z.; Qian, C.; Liu, G.; Ju, S. H.; Teng, G. J. Hif-prolyl hydroxylase 2 silencing using siRNA delivered by MRI-visible nanoparticles improves therapy efficacy of transplanted EPCs for ischemic stroke. Biomaterials 2019, 197, 229–243.
Lin, B. L.; Lu, L. J.; Wang, Y.; Zhang, Q. Y.; Wang, Z.; Cheng, G. X.; Duan, X. H.; Zhang, F.; Xie, M. W.; Le, H. B. et al. Nanomedicine directs neuronal differentiation of neural stem cells via silencing long noncoding RNA for stroke therapy. Nano Lett. 2021, 21, 806–815.
Liu, Y. L.; Ai, K. L.; Ji, X. Y.; Askhatova, D.; Du, R.; Lu, L. H.; Shi, J. J. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J. Am. Chem. Soc. 2017, 139, 856–862.
Guo, X.; Deng, G.; Liu, J.; Zou, P.; Du, F. Y.; Liu, F. Y.; Chen, A. T.; Hu, R.; Li, M.; Zhang, S. Q. et al. Thrombin-responsive, brain-targeting nanoparticles for improved stroke therapy. ACS Nano 2018, 12, 8723–8732.
Bao, Q. Q.; Hu, P.; Xu, Y. Y.; Cheng, T. S.; Wei, C. Y.; Pan, L. M.; Shi, J. L. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano 2018, 12, 6794–6805.
Dong, X. Y.; Gao, J.; Zhang, C. Y.; Hayworth, C.; Frank, M.; Wang, Z. J. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano 2019, 13, 1272–1283.
Shi, J. J.; Yu, W. Y.; Xu, L. H.; Yin, N.; Liu, W.; Zhang, K. X.; Liu, J. J.; Zhang, Z. Z. Bioinspired nanosponge for salvaging ischemic stroke via free radical scavenging and self-adapted oxygen regulating. Nano Lett. 2020, 20, 780–789.
Tang, C. M.; Wang, C.; Zhang, Y.; Xue, L. J.; Li, Y. Y.; Ju, C. Y.; Zhang, C. Recognition, intervention, and monitoring of neutrophils in acute ischemic stroke. Nano Lett. 2019, 19, 4470–4477.
Lv, W.; Xu, J. P.; Wang, X. Q.; Li, X. R.; Xu, Q. W.; Xin, H. L. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano 2018, 12, 5417–5426.
He, L. Z.; Huang, G. N.; Liu, H. X.; Sang, C. C.; Liu, X. X.; Chen, T. F. Highly bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci. Adv. 2020, 6, eaay9751.
De Ávila, B. E. F.; Ramírez-Herrera, D. E.; Campuzano, S.; Angsantikul, P.; Zhang, L. F.; Wang, J. Nanomotor-enabled pH-responsive intracellular delivery of caspase-3: Toward rapid cell apoptosis. ACS Nano 2017, 11, 5367–5374.
Emamaullee, J. A.; Shapiro, A. M. J. Interventional strategies to prevent β-cell apoptosis in islet transplantation. Diabetes 2006, 55, 1907–1914.
Cheng, G. F.; Zhu, L.; Mahato, R. I. Caspase-3 gene silencing for inhibiting apoptosis in insulinoma cells and human islets. Mol. Pharmaceutics 2008, 5, 1093–1102.
Chen, Y.; Chen, C.; Zhang, X. J.; He, C. C.; Zhao, P. X.; Li, M. S.; Fan, T.; Yan, R. C.; Lu, Y.; Lee, R. J. et al. Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects. Acta Pharm. Sin. B 2020, 10, 1106–1121.
Brandhorst, D.; Kumarasamy, V.; Maatoui, A.; Alt, A.; Bretzel, R. G.; Brandhorst, H. Porcine islet graft function is affected by pretreatment with a caspase-3 inhibitor. Cell Transplant. 2006, 15, 311–317.
Nakano, M.; Matsumoto, I.; Sawada, T.; Ansite, J.; Oberbroeckling, J.; Zhang, H. J.; Kirchhof, N. V.; Shearer, J.; Sutherland, D. E. R.; Hering, B. J. Caspase-3 inhibitor prevents apoptosis of human islets immediately after isolation and improves islet graft function. Pancreas 2004, 29, 104–109.
Zou, Y.; Sun, X. H.; Wang, Y. B.; Yan, C. N.; Liu, Y. J.; Li, J.; Zhang, D. Y.; Zheng, M.; Chung, R. S.; Shi, B. Y. Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment. Adv. Mater. 2020, 32, 2000416.
Wang, Y. L.; Pang, J. Y.; Wang, Q. Y.; Yan, L. C.; Wang, L. T.; Xing, Z.; Wang, C. M.; Zhang, J. F.; Dong, L. Delivering antisense oligonucleotides across the blood-brain barrier by tumor cell-derived small apoptotic bodies. Adv. Sci. 2021, 8, 2004929.
Kingwell, K. New targets for drug delivery across the BBB. Nat. Rev. Drug Discov. 2016, 15, 84–85.
Ma, F. H.; Yang, L.; Sun, Z. R.; Chen, J. J.; Rui, X. H.; Glass, Z.; Xu, Q. B. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci. Adv. 2020, 6, eabb4429.
Guan, J. B.; Guo, H.; Tang, T.; Wang, Y. H.; Wei, Y. S.; Seth, P.; Li, Y. M.; Dehm, S. M.; Ruoslahti, E.; Pang, H. B. iRGD-liposomes enhance tumor delivery and therapeutic efficacy of antisense oligonucleotide drugs against primary prostate cancer and bone metastasis. Adv. Funct. Mater. 2021, 31, 2100478.
Sicard, G.; Paris, C.; Giacometti, S.; Rodallec, A.; Ciccolini, J.; Rocchi, P.; Fanciullino, R. Enhanced antisense oligonucleotide delivery using cationic liposomes grafted with trastuzumab: A proof-of-concept study in prostate cancer. Pharm. 2020, 12, 1166.
Min, H. S.; Kim, H. J.; Naito, M.; Ogura, S.; Toh, K.; Hayashi, K.; Kim, B. S.; Fukushima, S.; Anraku, Y.; Miyata, K. et al. Systemic brain delivery of antisense oligonucleotides across the blood-brain barrier with a glucose-coated polymeric nanocarrier. Angew. Chem. , Int. Ed. 2020, 59, 8173–8180.
Lee, J. B.; Hong, J.; Bonner, D. K.; Poon, Z.; Hammond, P. T. Self-assembled RNA interference microsponges for efficient sirna delivery. Nat. Mater. 2012, 11, 316–322.
Zhang, K. X.; Liu, J. J.; Song, Q. L.; Yang, X.; Wang, D. Y.; Liu, W.; Shi, J. J.; Zhang, Z. Z. DNA nanosponge for adsorption and clearance of intracellular miR-21 and enhanced antitumor chemotherapy. ACS Appl. Mater. Interfaces 2019, 11, 46604–46613.
Li, K.; Lu, M.; Xia, X. H.; Huang, Y. Y. Recent advances in photothermal and RNA interfering synergistic therapy. Chin. Chem. Lett. 2021, 32, 1010–1016.
Lai, W. F.; Wong, W. T. Design of polymeric gene carriers for effective intracellular delivery. Trends Biotechnol. 2018, 36, 713–728.
Chen, W.; Hu, Y.; Ju, D. W. Gene therapy for neurodegenerative disorders: Advances, insights and prospects. Acta Pharm. Sin. B 2020, 10, 1347–1359.
Behr, M.; Zhou, J.; Xu, B.; Zhang, H. W. In vivo delivery of CRISPR-cas9 therapeutics: Progress and challenges. Acta Pharm. Sin. B 2021, 11, 2150–2171.
Chen, L.; Zhang, J.; Lin, Z.; Zhang, Z. Y.; Mao, M.; Wu, J. C.; Li, Q.; Zhang, Y. Q.; Fan, C. H. Pharmaceutical applications of framework nucleic acids. Acta Pharm. Sin. B 2022, 12, 76–91.
Wang, Y. Q.; Li, C. J.; Du, L. B.; Liu, Y. A reactive oxygen species-responsive dendrimer with low cytotoxicity for efficient and targeted gene delivery. Chin. Chem. Lett. 2020, 31, 275–280.
Guo, Q.; Li, C.; Zhou, W. X.; Chen, X. L.; Zhang, Y.; Lu, Y. F.; Zhang, Y. J.; Chen, Q. J.; Liang, D. H.; Sun, T. et al. GLUT1-mediated effective anti-miRNA21 pompon for cancer therapy. Acta Pharm. Sin. B 2019, 9, 832–842.
Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48.
Lee, J. H.; Shin, Y.; Lee, W.; Whang, K.; Kim, D.; Lee, L. P.; Choi, J. W.; Kang, T. General and programmable synthesis of hybrid liposome/metal nanoparticles. Sci. Adv. 2016, 2, e1601838.
Lopez-Pajares, V.; Yan, K.; Zarnegar, B. J.; Jameson, K. L.; Khavari, P. A. Genetic pathways in disorders of epidermal differentiation. Trends Genet. 2013, 29, 31–40.
Shohat, S.; Ben-David, E.; Shifman, S. Varying intolerance of gene pathways to mutational classes explain genetic convergence across neuropsychiatric disorders. Cell Rep. 2017, 18, 2217–2227.