AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Engineering electrophilic atomic Ir sites on CeO2 colloidal spheres for selectivity control in hydrogenation of α,β-unsaturated carbonyl compounds

Muhammad Mateen1( )Muhammad Nadeem Akhtar2Ling Gao1Weng-Chon (Max) CHEONG3( )Shanshan Lv4Yan Zhou4Zheng Chen4( )
College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao 999078, China
School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
Show Author Information

Graphical Abstract

We developed a novel emulsion-based molecule-nanoparticle self-assembly strategy for the atomic engineering of Ir species on three-dimensional CeO2 spheres. The formation of electrophilic Ir sites with highly depleted d-states at metal–support interface played a key role for acheiving exceptional selectivity towards unsaturated alcohols during selective hydrogenation of various α,β-unsaturated carbonyl compounds (UCCs).

Abstract

Selective hydrogenation of the carbonyl bond in α,β-unsaturated carbonyl compounds is rather challenging owing to the more feasible hydrogenation of ethylenic bond from both thermodynamic and kinetic aspects. Here, we demonstrate a facile emulsion-based molecule-nanoparticle self-assembly strategy for the atomic engineering of Ir species on three-dimensional CeO2 spheres (Ir1@CeO2). When applied to the hydrogenation of α,β-unsaturated aldehydes, Ir1@CeO2 catalyst remarkably exhibited ~ 100% selectivity towards unsaturated alcohols, whereas the formation of Ir nanoparticles on CeO2 drastically decreased the selectivity for unsaturated alcohols. Spectroscopic studies revealed that strong metal–support interactions triggered the charge transfer from Ir to CeO2, leading to the partial reduction of Ce4+ to Ce3+ along with the formation new Irδ+–O2––Ce3+(OV) interfaces. The electrophilic atomic Ir species at the Irδ+–O2––Ce3+ (OV) interfaces would therefore preferentially adsorb and facilitate hydrogenation of polar C=O bond to achieve exceptional selectivity.

Electronic Supplementary Material

Download File(s)
12274_2022_4405_MOESM1_ESM.pdf (1.3 MB)

References

1

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

2

Bonita, Y.; Jain, V.; Geng, F. Y.; O’Connell, T. P.;. Ramos, N. X.; Rai, N.; Hicks, J. C. Hydrogenation of cinnamaldehyde to cinnamyl alcohol with metal phosphides: Catalytic consequences of product and pyridine doping. Appl. Catal. B Environ. 2020, 277, 119272.

3

Ning, X.; Xu, Y. M.; Wu, A. Q.; Tang, C.; Jia, A. P.; Luo, M. F.; Lu, J. Q. Kinetic study of selective hydrogenation of crotonaldehyde over Fe-promoted Ir/BN catalysts. Appl. Surf. Sci. 2019, 463, 463–473.

4

Kahsar, K. R.; Schwartz, D. K.; Medlin, J. W. Control of Metal Catalyst Selectivity through Specific Noncovalent Molecular Interactions. J. Am. Chem. Soc. 2014, 136, 520–526.

5

Tamura, M.; Tokonami, K.; Nakagawa, Y.; Tomishige, K. Effective NbOx-modified Ir/SiO2 catalyst for selective gas-phase hydrogenation of crotonaldehyde to crotyl alcohol. ACS Sustainable Chem. Eng. 2017, 5, 3685–3697.

6

Piqueras, C. M.; Puccia, V.; Vega, D. A.; Volpe, M. A. Selective hydrogenation of cinnamaldehyde in supercritical CO2 over Me-CeO2 (Me = Cu, Pt, Au): Insight of the role of Me–Ce interaction. Appl. Catal. B Environ. 2016, 185, 265–271.

7

An, K.; Somorjai, G. A. Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 2012, 4, 1512–1524.

8

He, S. N.; Shao, Z. J.; Shu, Y. J.; Shi, Z. P.; Cao, X. M.; Gao, Q. S.; Hu, P. J.; Tang, Y. Enhancing metal–support interactions by molybdenum carbide: An efficient strategy toward the chemoselective hydrogenation of α, β-unsaturated aldehydes. Chem. -Eur. J. 2016, 22, 5698–5704.

9

Liu, Q. L.; Liu, Q.; Chen, Y. R.; Li, Y. L.; Su, H.; Liu, Q. H.; Li, G. Q. Ir nanoclusters confined within hollow MIL-101(Fe) for selective hydrogenation of α, β-unsaturated aldehyde. Chin. Chem. Lett. 2022, 33, 374–377.

10

Lan, X. C.; Wang, T. F. Highly selective catalysts for the hydrogenation of unsaturated aldehydes: A review. ACS Catal. 2020, 10, 2764–2790.

11

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

12

Zhang, L. L.; Ren, Y. J.; Liu, W. G.; Wang, A. Q.; Zhang, T. Single-atom catalyst: A rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 2018, 5, 653–672.

13

Corma, A.; Serna, P.; Concepción, P.; Calvino, J. J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 2008, 130, 8748–8753.

14

Yu, J.; Yang, Y. S.; Chen, L. F.; Li, Z. H.; Liu, W.; Xu, E. Z.; Zhang, Y. J.; Hong, S.; Zhang, X.; Wei, M. NiBi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Appl. Catal. B Environ. 2020, 277, 119273.

15

Luneau, M.; Lim, J. S.; Patel, D. A.; Sykes, E. C. H; Friend, C. M.; Sautet, P. Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: A review. Chem. Rev. 2020, 120, 12834–12872.

16

Cao, Y. Q.; Chen, B.; Guerrero-Sánchez, J.; Lee, I.; Zhou, X. G.; Takeuchi, N.; Zaera, F. Controlling selectivity in unsaturated aldehyde hydrogenation using single-site alloy catalysts. ACS Catal. 2019, 9, 9150–9157.

17

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

18

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

19

Li, J.; Li, Y. D.; Zhang, T. Recent progresses in the research of single-atom catalysts. Sci. China Mater. 2020, 63, 889–891.

20

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

21

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

22

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

23

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

24

Sun, K. A.; Zhao, L.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang, Z. W.; Li, Z. L.; Liu, Z. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068–3074.

25

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

26

Alcala, R.; DeLaRiva, A.; Peterson, E. J.; Benavidez, A.; Garcia-Vargas, C. E.; Jiang, D.; Pereira-Hernández, X. I.; Brongersma, H. H.; Veen, R. T.; Staněk, J. et al. Atomically dispersed dopants for stabilizing ceria surface area. Appl. Catal. B Environ. 2021, 284, 119722.

27

Ye, X. X.; Wang, H. W.; Lin, Y.; Liu, X. Y.; Cao, L. N.; Gu, J.; Lu, J. L. Insight of the stability and activity of platinum single atoms on ceria. Nano Res. 2019, 12, 1401–1409.

28

Li, H. L.; Wang, M. L.; Luo. L. H.; Zeng, J. Static regulation and dynamic evolution of single-atom catalysts in thermal catalytic reactions. Adv. Sci. 2019, 6, 1801471.

29

Tan, K. Y.; Dixit, M.; Dean, J.; Mpourmpakis, G. Predicting metal–support interactions in oxide-supported single-atom catalysts. Ind. Eng. Chem. Res. 2019, 58, 20236–20246.

30

Daelman, N.; Capdevila-Cortada, M.; López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 2019, 18, 1215–1221.

31

He, S. N.; Xie, L. F.; Che, M. W.; Chan, H. C.; Yang, L. C.; Shi, Z. P.; Tang, Y.; Gao, Q. S. Chemoselective hydrogenation of α, β-unsaturated aldehydes on hydrogenated MoOx nanorods supported iridium nanoparticles. J. Mol. Catal. A Chem. 2016, 425, 248–254.

32

De Bruyn, M.; Coman, S.; Bota, R.; Parvulescu, V. I.; De Vos, D. E.; Jacobs, P. A. Chemoselective reduction of complex α, β-unsaturated ketones to allylic alcohols over Ir-metal particles on β zeolites. Angew. Chem., Int. Ed. 2003, 115, 5491–5494.

33

Li, R. R.; Zhao, J.; Gan, Z. X.; Jia, W. P.; Wu, C. L.; Han, D. M. Gold promotion of MCM-41 supported ruthenium catalysts for selective hydrogenation of α, β-unsaturated aldehydes and ketones. Catal. Lett. 2018, 148, 267–276.

34
Martínez-Prieto, L. M.; Cano, I.; Van Leeuwen, P. W. N. M. Iridium nanoparticles for hydrogenation reactions. In Iridium Catalysts for Organic Reactions. Oro, L. A. ; Claver, C. , Eds. ; Springer: Cham, 2021; pp 397‒454.
35

Tamura, M.; Yonezawa, D.; Oshino, T.; Nakagawa, Y.; Tomishige, K. In situ formed Fe cation modified Ir/MgO catalyst for selective hydrogenation of unsaturated carbonyl compounds. ACS Catal. 2017, 7, 5103–5111.

36

Kumar, P. S. M.; Thiripuranthagan, S.; Imai, T.; Kumar, G.; Pugazhendhi, A.; Vijayan, S. R.; Esparza, R.; Abe, H.; Krishnan, S. K. Pt nanoparticles supported on mesoporous CeO2 nanostructures obtained through green approach for efficient catalytic performance toward ethanol electro-oxidation. ACS Sustainable Chem. Eng. 2017, 5, 11290–11299.

37

Wang, Q.; Gong, J. H.; Zhang, H.; Fan, Q. Y.; Xue, L.; Wu, J. F.; Li, J. X.; Wang, Y.; Liu, Z.; Gao, R. et al. Co-promotion of two-type active sites: PtCux single-atom alloy and copper–ceria interface for preferential oxidation of CO. Appl. Catal. B Environ. 2022, 306, 121117.

38
Yang, L.; Cai, Z.; Hao, L.; Xing, Z. P.; Dai, Y.; Xu, X.; Pan, S. Y.; Duan, Y. Q.; Zou, J. L. Nano Ce2O2S with highly enriched oxygen-deficient Ce3+ sites supported by N and S dual-doped carbon as an active oxygen-supply catalyst for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2017, 9, 22518–22529.
39

Tang, Y.; Wei, Y. C.; Wang, Z. Y.; Zhang, S. R.; Li, Y. T.; Nguyen, L.; Li, Y. X.; Zhou, Y.; Shen, W. J.; Tao, F. F. et al. Synergy of single-atom Ni1 and Ru1 Sites on CeO2 for dry reforming of CH4. J. Am. Chem. Soc. 2019, 141, 7283–7293.

40

Jiang, Z. Y.; Jing, M. Z.; Feng, X. B.; Xiong, J. C.; He, C.; Douthwaite, M.; Zheng, L. R.; Song, W. Y.; Liu, J.; Qu, Z. G. Stabilizing platinum atoms on CeO2 oxygen vacancies by metal–support interaction induced interface distortion: Mechanism and application. App. Catal. B Environ. 2020, 278, 119304.

41

Nguyen, T, S.; Postole, G.; Loridant, S.; Bosselet, F.; Burel, L.; Aouine, M.; Massin, L.; Gélin, P.; Morfin, F. Piccolo, L Ultrastable iridium-ceria nanopowders synthesized in one step by solution combustion for catalytic hydrogen production. J. Mater. Chem. A 2014, 2, 19822–19832.

42

Lykhach, Y; Kubát, J.; Neitzel, A.; Tsud, N.; Vorokhta, M.; Skála, T.; Dvořák, F.; Kosto, Y.; Prince, K. C.; Matolín, V. et al. Charge transfer and spillover phenomena in ceria-supported iridium catalysts: A model study. J. Chem. Phys. 2019, 151, 204703.

43

Zou, J.; Yu, B.; Zhang, S. Y.; Zhang, J. H.; Chen, Y. D.; Cui, L.; Xu, T. K.; Cai, W. J. Hydrogen production from ethanol over Ir/CeO2 catalyst: Effect of the calcination temperature. Fuel 2015, 159, 741–750.

44

Wang, F. G.; Zhang, L. J.; Zhu, J. Y.; Han, B. L.; Zhao, L.; Yu, H.; Deng, Z. Y.; Shi, W. D. Study on different CeO2 structure stability during ethanol steam reforming reaction over Ir/CeO2 nanocatalysts. Appl. Catal. A Gen. 2018, 564, 226–233.

45

Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M. Y.; Xiang, B.; Li, J.; Feng, Z. X.; Xu, H.; Gu, M. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433.

46

Leng, F. Q.; Gerber, I. C.; Axet, M. R.; Serp, P. Selectivity shifts in hydrogenation of cinnamaldehyde on electron-deficient ruthenium nanoparticles. C. R. Chim. 2018, 21, 346–353.

47

Lou, Y.; Zheng, Y. P.; Li, X.; Ta, N.; Xu, J.; Nie, Y. F.; Cho, K.; Liu, J. Y. Pocketlike active site of Rh1/MoS2 single-atom catalyst for selective crotonaldehyde hydrogenation. J. Am. Chem. Soc. 2019, 141, 19289–19295.

48

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

49

Lou, Y.; Wu, H. L.; Liu, J. Y. Nanocarbon-edge-anchored high-density Pt atoms for 3-nitrostyrene hydrogenation: Strong metal–carbon interaction. iScience 2019, 13, 190–198.

50

Gao, R. J.; Pan, L.; Wang, H. W.; Yao, Y. D.; Zhang, X. W.; Wang, L.; Zou, J. J. Breaking trade-off between selectivity and activity of nickel-based hydrogenation catalysts by tuning both steric effect and d-band center. Adv. Sci. 2019, 6, 1900054.

Nano Research
Pages 7107-7115
Cite this article:
Mateen M, Akhtar MN, Gao L, et al. Engineering electrophilic atomic Ir sites on CeO2 colloidal spheres for selectivity control in hydrogenation of α,β-unsaturated carbonyl compounds. Nano Research, 2022, 15(8): 7107-7115. https://doi.org/10.1007/s12274-022-4405-4
Topics:

905

Views

9

Crossref

10

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 14 March 2022
Revised: 04 April 2022
Accepted: 06 April 2022
Published: 31 May 2022
© Tsinghua University Press 2022
Return