AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Realizing nearly isotropic thermoelectric properties in 2D-layered SnS nanomaterials through highly symmetric metastable-phase powder precursors

Fanshi Wu1Junjie Yuan1Wenxin Lai1Liangwei Fu1( )Biao Xu1,2( )
School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Show Author Information

Graphical Abstract

We design a phase-conversion strategy to obtain isotropic materials through a selectively synthesized highly symmetric metastable phase as the precursor.

Abstract

Metastable materials offer a broad and novel platform for the development of next-generation science and technology. Phase engineering including synthesis of materials with unconventional phases and phase transition of metastable materials has been explored in layered materials but has not tackled their anisotropy issue yet. The high anisotropy in layered materials further adds the cost of orientation screening of materials. Herein, we report the effect of Ag doping on facilitating the formation of metastable π-cubic phase SnS during the solvothermal synthesis process. On this basis, we construct cubic-to-orthorhombic (CTO) samples and elucidate the intrinsic mechanisms of its nearly isotropic thermoelectric properties by characterizing the texturing information and analyzing the valence charge density calculated by density functional theory (DFT). This work demonstrates a convenient approach to synthesize layered materials with isotropic electrical and thermal transport behaviors through a precursor of metastable phase.

Electronic Supplementary Material

Download File(s)
12274_2022_4406_MOESM1_ESM.pdf (1.4 MB)

References

1

Wu, J.; Chen, Y. B.; Wu, J. Q.; Hippalgaonkar, K. Perspectives on thermoelectricity in layered and 2D materials. Adv. Electron. Mater. 2018, 4, 1800248.

2

Zhou, Y. M.; Zhao, L. D. Promising thermoelectric bulk materials with 2D structures. Adv. Mater. 2017, 29, 1702676.

3

Li, F.; Xu, B. Y.; Yang, W.; Qi, Z. Y.; Ma, C.; Wang, Y. J.; Zhang, X. H.; Luo, Z. R.; Liang, D. L.; Li, D. et al. High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures. Nano Res. 2020, 13, 1053–1059.

4

Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

5

Duong, A. T.; Nguyen, V. Q.; Duvjir, G.; Duong, V. T.; Kwon, S.; Song, J. Y.; Lee, J. K.; Lee, J. E.; Park, S. D.; Min, T. et al. Achieving ZT = 2.2 with Bi-doped n-type SnSe single crystals. Nat. Commun. 2016, 7, 13713.

6

Zhao, L. D.; Chang, C.; Tan, G. J.; Kanatzidis, M. G. SnSe: A remarkable new thermoelectric material. Energy Environ. Sci. 2016, 9, 3044–3060.

7

Shen, J. J.; Hu, L. P.; Zhu, T. J.; Zhao, X. B. The texture related anisotropy of thermoelectric properties in bismuth telluride based polycrystalline alloys. Appl. Phys. Lett. 2011, 99, 124102.

8

Shi, E. Z.; Cui, S.; Kempf, N.; Xing, Q. F.; Chasapis, T.; Zhu, H. Z.; Li, Z.; Bahk, J. H.; Snyder, G. J.; Zhang, Y. L. et al. Origin of inhomogeneity in spark plasma sintered bismuth antimony telluride thermoelectric nanocomposites. Nano Res. 2020, 13, 1339–1346.

9

Zhang, H.; Momand, J.; Levinsky, J.; Guo, Q. K.; Zhu, X. T.; ten Brink, G. H.; Blake, G. R.; Palasantzas, G.; Kooi, B. J. Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin films. Nano Res. 2022, 15, 2382–2390.

10

He, W. K.; Wang, D. Y.; Wu, H. J.; Xiao, Y.; Zhang Y.; He, D. S.; Feng, Y.; Hao, Y. J.; Dong, J. F.; Chetty, R. et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science 2019, 365, 1418–1424.

11

He, W. K.; Wang, D. Y.; Dong, J. F.; Qiu, Y.; Fu, L. W.; Feng, Y.; Hao, Y. J.; Wang, G. T.; Wang, J. F.; Liu, C. et al. Remarkable electron and phonon band structures lead to a high thermoelectric performance ZT > 1 in earth-abundant and eco-friendly SnS crystals. J. Mater. Chem. A 2018, 6, 10048–10056.

12

Zhou, B. Q.; Li, S.; Li, W.; Li, J.; Zhang, X. Y.; Lin, S. Q.; Chen, Z. W.; Pei, Y. Z. Thermoelectric properties of SnS with Na-doping. ACS Appl. Mater. Interfaces 2017, 9, 34033–34041.

13

Skelton, J. M.; Burton, L. A.; Oba, F.; Walsh, A. Chemical and lattice stability of the tin sulfides. J. Phys. Chem. C 2017, 121, 6446–6454.

14

Rabkin, A.; Samuha, S.; Abutbul, R. E.; Ezersky, V.; Meshi, L.; Golan, Y. New nanocrystalline materials: A previously unknown simple cubic phase in the SnS binary system. Nano Lett. 2015, 15, 2174–2179.

15

Abutbul, R. E.; Segev, E.; Argaman, U.; Makov, G.; Golan, Y. π-Phase tin and germanium monochalcogenide semiconductors: An emerging materials system. Adv. Mater. 2018, 30, 1706285.

16

Breternitz, J.; Gunder, R.; Hempel, H.; Binet, S.; Ahmet, I.; Schorr, S. Facile bulk synthesis of π-cubic SnS. Inorg. Chem. 2017, 56, 11455–11457.

17

Su, X. Z.; Jiang, Z. J.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X. et al. Complementary operandospectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322.

18

Gu, C.; Xu, H. M.; Han, S. K.; Gao, M. R.; Yu, S. H. Soft chemistry of metastable metal chalcogenide nanomaterials. Chem. Soc. Rev. 2021, 50, 6671–6683.

19

Liu, G.; Gong, J.; Kong, L. P.; Schaller, R. D.; Hu, Q. Y.; Liu, Z. X.; Yan, S.; Yang, W. G.; Stoumpos, C. C.; Kanatzidis, M. G. et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc. Natl. Acad. Sci. USA 2018, 115, 8076–8081.

20

Han, A.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

21

Sun, W. H.; Dacek, S. T.; Ong, S. P.; Hautier, G.; Jain, A.; Richards, W. D.; Gamst, A. C.; Persson, K. A.; Ceder G. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2016, 2, e1600225.

22

Tian, S. B.; Gong, W. B.; Chen, W. X.; Lin, N.; Zhu, Y. Q.; Feng, Q. C.; Xu Q.; Fu, Q.; Chen, C.; Luo, J. et al. Regulating the catalytic performance of single-atomic-site Ir catalyst for biomass conversion by metal-support interactions. ACS Catal. 2019, 9, 5223–5230.

23

Zhao, J. L.; Ma, D. T.; Wang, C.; Guo, Z. N.; Zhang B.; Li, J. Q.; Nie, G. H.; Xie, N.; Zhang, H. Recent advances in anisotropic two-dimensional materials and device applications. Nano Res. 2021, 14, 897–919.

24

Jin, M.; Lin, S. Q.; Li, W.; Zhang, X. Y.; Pei, Y. Z. Nearly isotropic transport properties in anisotropically structured n-type single-crystalline Mg3Sb2. Mater. Today Phys. 2021, 21, 100508.

25

Chen, X. Y.; Li, J.; Shi, Q.; Chen, Y. Y.; Gong, H. J.; Huang, Y. P.; Lin, L. W.; Ren, D.; Liu, B.; Ang, R. Isotropic thermoelectric performance of layer-structured n-type Bi2Te2.7Se0.3 by Cu doping. ACS Appl. Mater. Interfaces 2021, 13, 58781–58788.

26

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

27

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

28

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

29

Kirklin, S.; Saal, J. E.; Meredig, B.; Thompson, A.; Doak, J. W.; Aykol, M.; Rühl, S.; Wolverton, C. The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies. npj Comput. Mater. 2015, 1, 15010.

30

Li, Q.; Rellán-Piñeiro, M.; Almora-Barrios, N.; Garcia-Ratés, M.; Remediakis, I. N.; López, N. Shape control in concave metal nanoparticles by etching. Nanoscale 2017, 9, 13089–13094.

31

Stevanović, V.; Hartman, K.; Jaramillo, R.; Ramanathan, S.; Buonassisi, T.; Graf, P. Variations of ionization potential and electron affinity as a function of surface orientation: The case of orthorhombic SnS. Appl. Phys. Lett. 2014, 104, 211603.

32

Asfandiyar; Cai, B. W.; Zhao, L. D.; Li, J. F. High thermoelectric figure of merit ZT > 1 in SnS polycrystals. J. Materiomics 2020, 6, 77–85.

33

Tan, Q.; Zhao, L. D.; Li, J. F.; Wu, C. F.; Wei, T. R.; Xing, Z. B.; Kanatzidis, M. G. Thermoelectrics with earth abundant elements: Low thermal conductivity and high thermopower in doped SnS. J. Mater. Chem. A 2014, 2, 17302–17306.

34

Baby, B. H.; Mohan, D. B. Structural, optical and electrical studies of DC-RF magnetron co-sputtered Cu, In & Ag doped SnS thin films for photovoltaic applications. Solar Energy 2019, 194, 61–73.

35

Wu, H.; Peng, K.; Zhang, B.; Gong, X. N.; Feng, Z. Z.; Zhang, X. M.; Xi, M.; Yan, X. M.; Zhang, Y. S.; Wang, G. Y. et al. Realizing high thermoelectricity in polycrystalline tin sulfide via manipulating Fermi surface anisotropy and phonon dispersion. Mater. Today Phys. 2020, 14, 100221.

36

Feng, D.; Ge, Z. H.; Chen, Y. X.; Li, J.; He, J. Q. Hydrothermal synthesis of SnQ (Q = Te, Se, S) and their thermoelectric properties. Nanotechnology 2017, 28, 455707.

37

Tang, H. C.; Dong, J. F.; Sun, F. H.; Asfandiyar; Shang, P. P.; Li, J. F. Adjusting Na doping via wet-chemical synthesis to enhance thermoelectric properties of polycrystalline SnS. Sci. China Mater. 2019, 62, 1005–1012.

38

Xu, B.; Feng, T. L.; Li, Z.; Zhou, L.; Pantelides, S. T.; Wu, Y. Creating zipper-like van der Waals gap discontinuity in low-temperature-processed nanostructured PbBi2nTe1+3n: Enhanced phonon scattering and improved thermoelectric performance. Angew. Chem., Int. Ed. 2018, 57, 10938–10943.

39

Kitchaev, D. A.; Ceder, G. Evaluating structure selection in the hydrothermal growth of FeS2 pyrite and marcasite. Nat. Commun. 2016, 7, 13799.

40

Li, X. Q.; Zhou, L. M.; Wang, H.; Meng, D. C.; Qian, G. N.; Wang, Y.; He, Y. S.; Wu, Y. S.; Hong, Z. J.; Ma, Z. F. et al. Dopants modulate crystal growth in molten salts enabled by surface energy tuning. J. Mater. Chem. A 2021, 9, 19675–19680.

41

Baumgartner, J.; Dey, A.; Bomans, P. H. H.; Le Coadou, C.; Fratzl, P.; Sommerdijk, N. A. J. M.; Faivre, D. Nucleation and growth of magnetite from solution. Nat. Mater. 2013, 12, 310–314.

42

Li, L. W.; Peng, C. X.; Chen, J.; Ma, Z.; Chen, Y. Q.; Li, S. Y.; Wang, J. L.; Wang, C. Study the effect of alloying on the phase transition behavior and thermoelectric properties of Ag2S. J. Alloys Compd. 2021, 886, 161241.

43

Liu, W. D.; Shi, X. L.; Lin, Z. J.; Sun, Q.; Han, G.; Chen, Z. G.; Zou, J. Morphology and texture engineering enhancing thermoelectric performance of solvothermal synthesized ultralarge SnS microcrystal. ACS Appl. Energy Mater. 2020, 3, 2192–2199.

44

Wu, H.; Lu, X.; Wang, G. Y.; Peng, K. L.; Chi, H.; Zhang, B.; Chen, Y. J.; Li, C. J.; Yan, Y. C.; Guo, L. J. et al. Sodium-doped tin sulfide single crystal: A nontoxic earth-abundant material with high thermoelectric performance. Adv. Energy Mater. 2018, 8, 1800087.

45

Chang, C.; Wu, M. H.; He, D. S.; Pei, Y. L.; Wu, C. F.; Wu, X. F.; Yu, H. L.; Zhu, F. Y.; Wang, K. D.; Chen. Y. et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 2018, 360, 778–783.

46

Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276.

Nano Research
Pages 7713-7722
Cite this article:
Wu F, Yuan J, Lai W, et al. Realizing nearly isotropic thermoelectric properties in 2D-layered SnS nanomaterials through highly symmetric metastable-phase powder precursors. Nano Research, 2022, 15(8): 7713-7722. https://doi.org/10.1007/s12274-022-4406-3
Topics:

734

Views

3

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 17 March 2022
Revised: 05 April 2022
Accepted: 06 April 2022
Published: 21 June 2022
© Tsinghua University Press 2022
Return