AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Investigation of charge transfer between donor and acceptor for small-molecule organic solar cells by scanning tunneling microscopy and ultrafast transient absorption spectroscopy

Yuchuan Xiao1,4,6,§Linxiu Cheng1,2,§Xinyu Sui1,§Qi Wang1Jie Chen1Dan Deng3Jianqi Zhang3Xuan Peng1,3Xiaokang Li5Xunwen Xiao6Ke Deng1( )Xinfeng Liu1( )Zhixiang Wei3( )Qingdao Zeng1,4( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China

§ Yuchuan Xiao, Linxiu Cheng, and Xinyu Sui contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, the morphologies of BTID-nF (n = 1, 2)/PC71BM donor–acceptor system in active layer of organic solar cell have been studied by means of scanning tunneling microscopy (STM). The nature of the charge transfers in BTID-nF (n = 1, 2)/PC71BM donor–acceptor system has been revealed by scanning tunneling spectroscopy (STS) and transient absorption (TA) spectroscopy.

Abstract

Small-molecule organic solar cell is a category of clean energy potential device since charge transfers between donor and acceptor. The morphologies, co-assembly behavior, interaction sites, and charge transfer of BTID-nF (n = 1, 2)/PC71BM donor–acceptor system in the active layer of organic solar cell have been studied employing scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), density functional theory (DFT) calculations, and transient absorption (TA) spectroscopy. The results show that BTID-1F and BTID-2F form bright strip structures, whereas BTID-nF (n = 1, 2)/PC71BM form ridge-like structures with each complex composed of one BTID-nF (n = 1, 2) molecule and four PC71BM molecules which adsorbed around the BTID-nF (n = 1, 2) molecule by S···π interaction. With the assistance of S···π interaction between BTID-nF (n = 1, 2) and PC71BM, BTID-nF (n = 1, 2)/PC71BM co-assembled ridge-like structures are more stable than the BTID-nF (n = 1, 2) ridge structures. To investigate the charge transfer of BTID-nF (n = 1, 2)/PC71BM system, STS measurements, DFT calculation, and TA spectroscopy are further performed. The results show that charge transfer occurs in BTID-nF (n = 1, 2)/PC71BM system with the electron transferring from BTID-nF (n = 1, 2) molecules to PC71BM.

Electronic Supplementary Material

Download File(s)
12274_2022_4408_MOESM1_ESM.pdf (1 MB)

References

1

Kan, B.; Feng, H. R.; Wan, X. J.; Liu, F.; Ke, X.; Wang, Y. B.; Wang, Y. C.; Zhang, H. T.; Li, C. X.; Hou, J. H. et al. Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells. J. Am. Chem. Soc. 2017, 139, 4929–4934.

2

Zhao, W. C.; Li, S. S.; Yao, H. F.; Zhang, S. Q.; Zhang, Y.; Yang, B.; Hou, J. H. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 2017, 139, 7148–7151.

3

Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352, aad4424.

4

Hou, J. H.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128.

5

Ge, J. F.; Hong, L.; Song, W.; Xie, L.; Zhang, J. S.; Chen, Z. Y.; Yu, K. B.; Peng, R. X.; Zhang, X. L.; Ge, Z. Y. Solvent annealing enables 15.39% efficiency all-small-molecule solar cells through improved molecule interconnection and reduced non-radiative loss. Adv. Energy Mater. 2021, 11, 2100800.

6

Li, C. Q.; Zhang, X.; Yu, N.; Gu, X. B.; Qin, L. Q.; Wei, Y. N.; Liu, X. Z.; Zhang, J. Q.; Wei, Z. X.; Tang, Z. et al. Simple nonfused-ring electron acceptors with noncovalently conformational locks for low-cost and high-performance organic solar cells enabled by end-group engineering. Adv. Funct. Mater. 2022, 32, 2108861.

7

Wang, X. D.; Lu, H.; Liu, Y. H.; Zhang, A. D.; Yu, N.; Wang, H.; Li, S.; Zhou, Y. Y.; Xu, X. J.; Tang, Z. et al. Simple nonfused ring electron acceptors with 3D network packing structure boosting the efficiency of organic solar cells to 15.44%. Adv. Energy Mater. 2021, 11, 2102591.

8

Zhang, J. Q.; Bai, F. J.; Angunawela, I.; Xu, X. Y.; Luo, S. W.; Li, C.; Chai, G. D.; Yu, H.; Chen, Y. Z.; Hu, H. W. et al. Alkyl-chain branching of non-fullerene acceptors flanking conjugated side groups toward highly efficient organic solar cells. Adv. Energy Mater. 2021, 11, 2102596.

9

Qin, J. Z.; Chen, Z. H.; Bi, P. Q.; Yang, Y.; Zhang, J. Q.; Huang, Z. Y.; Wei, Z. X.; An, C. B.; Yao, H. F.; Hao, X. T. et al. 17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy Environ. Sci. 2021, 14, 5903–5910.

10

Xu, T. L.; Lv, J.; Yang, K.; He, Y.; Yang, Q. G.; Chen, H. Y.; Chen, Q. Q.; Liao, Z. H.; Kan, Z. P.; Duan, T. N. et al. 15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor. Energy Environ. Sci. 2021, 14, 5366–5376.

11
Zhang, X.; Qin, L. Q.; Li, Y. H.; Yu, J. W.; Chen, H.; Gu, X. B.; Wei, Y. N.; Lu, X. H.; Gao, F.; Huang, H. High-performance all-small-molecule organic solar cells enabled by regio-isomerization of noncovalently conformational locks. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202112433.
12

Dang, M. T.; Hirsch, L.; Wantz, G.; Wuest, J. D. Controlling the morphology and performance of bulk heterojunctions in solar cells. lessons learned from the benchmark poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester system. Chem. Rev. 2013, 113, 3734–3765.

13

Sakakibara, K.; Chithra, P.; Das, B.; Mori, T.; Akada, M.; Labuta, J.; Tsuruoka, T.; Maji, S.; Furumi, S.; Shrestha, L. K. et al. Aligned 1-D nanorods of a π-gelator exhibit molecular orientation and excitation energy transport different from entangled fiber networks. J. Am. Chem. Soc. 2014, 136, 8548–8551.

14

Praveen, V. K.; Ranjith, C.; Bandini, E.; Ajayaghosh, A.; Armaroli, N., Oligo(phenylenevinylene) hybrids and self-assemblies: Versatile materials for excitation energy transfer. Chem. Soc. Rev. 2014, 43, 4222–4242.

15

Wang, X. J.; Miao, X. R.; Ying, L.; Deng, W. L.; Cao, Y. Effect of pyridyl orientation on the molecular conformation and self-assembled morphology of regioisomeric diketopyrrolopyrrole derivatives. J. Phys. Chem. C 2017, 121, 19305–19313.

16

Głowacki, E. D.; Irimia-Vladu, M.; Kaltenbrunner, M.; Ga̧siorowski, J.; White, M. S.; Monkowius, U.; Romanazzi, G.; Suranna, G. P.; Mastrorilli, P.; Sekitani, T. et al. Organic electronics: Hydrogen-bonded semiconducting pigments for air-stable field-effect transistors (Adv. Mater. 11/2013). Adv. Mater. 2013, 25, 1513.

17

Ruiz-Carretero, A.; Aytun, T.; Bruns, C. J.; Newcomb, C. J.; Tsai, W. W.; Stupp, S. I. Stepwise self-assembly to improve solar cell morphology. J. Mater. Chem. A 2013, 1, 11674–11681.

18

Aytun, T.; Barreda, L.; Ruiz-Carretero, A.; Lehrman, J. A.; Stupp, S. I. Improving solar cell efficiency through hydrogen bonding: A method for tuning active layer morphology. Chem. Mater. 2015, 27, 1201–1209.

19

Han, G. C.; Yi, Y. P.; Shuai, Z. G. From molecular packing structures to electronic processes: Theoretical simulations for organic solar cells. Adv. Energy Mater. 2018, 8, 1702743.

20

Furukawa, S.; Tahara, K.; De Schryver, F. C.; Van der Auweraer, M.; Tobe, Y.; De Feyter, S. Structural transformation of a two-dimensional molecular network in response to selective guest inclusion. Angew. Chem., Int. Ed. 2007, 46, 2831–2834.

21

Stepanow, S.; Lingenfelder, M.; Dmitriev, A.; Spillmann, H.; Delvigne, E.; Lin, N.; Deng, X. B.; Cai, C. Z.; Barth, J. V.; Kern, K. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nat. Mater. 2004, 3, 229–233.

22

Sirtl, T.; Song, W. T.; Eder, G.; Neogi, S.; Schmittel, M.; Heckl, W. M.; Lackinger, M. Solvent-dependent stabilization of metastable monolayer polymorphs at the liquid–solid interface. ACS Nano 2013, 7, 6711–6718.

23

Chang, S. Q.; Liu, R. C.; Wang, L. C.; Li, Min.; Deng, K.; Zheng, Q. Y.; Zeng, Q. D. Formation of ordered coronene clusters in template utilizing the structural transformation of hexaphenylbenzene derivative networks on graphite surface. ACS Nano 2016, 10, 342–348.

24

Peng, X.; Cheng, L. X.; Zhu, X. Y.; Geng, Y. F.; Zhao, F. Y.; Hu, K. D.; Guo, X.; Deng, K.; Zeng, Q. D. Pyridine-induced interfacial structural transformation of tetraphenylethylene derivatives investigated by scanning tunneling microscopy. Nano Res. 2018, 11, 5823–5834.

25

Iritani, K.; Tahara, K.; De Feyter, S.; Tobe, Y. Host–guest chemistry in integrated porous space formed by molecular self-assembly at liquid–solid interfaces. Langmuir 2017, 33, 4601–4618.

26

Plass, K. E.; Grzesiak, A. L.; Matzger, A. J. Molecular packing and symmetry of two-dimensional crystals. Acc. Chem. Res. 2007, 40, 287–293.

27

Xiao, B.; Tang, A. L.; Cheng, L. X.; Zhang, J. Q.; Wei, Z. X.; Zeng, Q. D.; Zhou, E. J. Non-fullerene acceptors with A2  = A1-D-A1  = A2 skeleton containing benzothiadiazole and thiazolidine-2,4-dione for high-performance P3HT-based organic solar cells. Solar RRL 2017, 1, 1700166.

28

Geng, Y. F.; Li, P.; Xue, J. D.; Luo, D. P.; Zhang, J. Y.; Shu, L. J.; Deng, K.; Xie, J. L.; Zeng, Q. D. Specific distribution of orientated C70-fullerene triggered by solvent-tuned macrocycle adlayer. Nano Res. 2017, 10, 991–1000.

29

Xu, J.; Liu, W. X.; Geng, Y. F.; Deng, K.; Zhan, C. L.; Zeng, Q. D. An STM/STS study of site-selective adsorption of C70 molecules onto arc-shaped BODIPY molecular-networks. Nanoscale 2017, 9, 2579–2584.

30

Zhang, S. Q.; Liu, Z. Y.; Fu, W. F.; Liu, F.; Wang, C. M.; Sheng, C. Q.; Wang, Y. F.; Deng, K.; Zeng, Q. D.; Shu, L. J. et al. Donor–acceptor conjugated macrocycles: Synthesis and host–guest coassembly with fullerene toward photovoltaic application. ACS Nano 2017, 11, 11701–11713.

31

Cheng, L. X.; Peng, X.; Zhang, S. Q.; Deng, K.; Shu, L. J.; Wan, J. H.; Zeng, Q. D. Selective and competitive adsorption behaviors of guest molecules in donor–acceptor conjugated macrocycles networks on liquid/solid interface. Appl. Surf. Sci. 2018, 462, 1036–1043.

32

Berera, R.; van Grondelle, R.; Kennis, J. T. M. Ultrafast transient absorption spectroscopy: Principles and application to photosynthetic systems. Photosynth. Res. 2009, 101, 105–118.

33

Li, Y. Z.; Shi, J.; Mi, Y.; Sui, X. Y.; Xu, H. Y.; Liu, X. F. Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides. J. Mater. Chem. C 2019, 7, 4304–4319.

34

Becke, A. D. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 1988, 88, 2547–2553.

35

Meunier, M. Introduction to materials studio. EPJ Web Conf. 2012, 30, 04001.

36

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

37
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 09 Rev. A. 02. Wallingford, CT: Gaussian, Inc., 2016.
38

Deng, D.; Zhang, Y. J., Zhang, J. Q.; Wang, Z. Y.; Zhu, L. Y.; Fang, J.; Xia B. Z.; Wang, Z.; Lu, K.; Ma, W.; Wei, Z. X. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat. Commun. 2016, 7, 13740.

39

Deibel, C.; Strobel, T.; Dyakonov, V. Role of the charge transfer state in organic donor–acceptor solar cells. Adv. Mater. 2010, 22, 4097–4111.

40

Hou, Y. Q.; Zhang, X.; Chen, K. P.; Liu, D. Y.; Wang, Z. J.; Liu, Q. Y.; Zhao, J. Z.; Barbon, A. Charge separation, charge recombination, long-lived charge transfer state formation and intersystem crossing in organic electron donor/acceptor dyads. J. Mater. Chem. C 2019, 7, 12048–12074.

41

Yamamoto, S.; Ohkita, H.; Benten, H.; Ito, S. Role of interfacial charge transfer state in charge generation and recombination in low-bandgap polymer solar cell. J. Phys. Chem. C. 2012, 116, 14804–14810.

Nano Research
Pages 8019-8027
Cite this article:
Xiao Y, Cheng L, Sui X, et al. Investigation of charge transfer between donor and acceptor for small-molecule organic solar cells by scanning tunneling microscopy and ultrafast transient absorption spectroscopy. Nano Research, 2022, 15(9): 8019-8027. https://doi.org/10.1007/s12274-022-4408-1
Topics:

960

Views

6

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 06 February 2022
Revised: 30 March 2022
Accepted: 07 April 2022
Published: 08 June 2022
© Tsinghua University Press 2022
Return