AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction

Yang Jiang1,2,§Jie An1,2,§Fei Liang3,§Guoyu Zuo4Jia Yi1,2Chuan Ning1,2Hong Zhang4Kai Dong1,2( )Zhong Lin Wang1,2,5( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Institute of Textiles and Clothing, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong 999077, China
Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

§ Yang Jiang, Jie An, and Fei Liang contributed equally to this work.

Show Author Information

Graphical Abstract

This study proposes a portable and convenient self-powered sitting position monitoring vest (SPMV) that reminds users to maintain the right posture during a sustained working period. The SPMV exhibits a high sensitivity, excellent mechanical stretchability, good air permeability, and a posture recognition accuracy of 96.6% using the random forest classifier.

Abstract

With increasing work pressure in modern society, prolonged sedentary positions with poor sitting postures can cause physical and psychological problems, including obesity, muscular disorders, and myopia. In this paper, we present a self-powered sitting position monitoring vest (SPMV) based on triboelectric nanogenerators (TENGs) to achieve accurate real-time posture recognition through an integrated machine learning algorithm. The SPMV achieves high sensitivity (0.16 mV/Pa), favorable stretchability (10%), good stability (12,000 cycles), and machine washability (10 h) by employing knitted double threads interlaced with conductive fiber and nylon yarn. Utilizing a knitted structure and sensor arrays that are stitched into different parts of the clothing, the SPMV offers a non-invasive method of recognizing different sitting postures, providing feedback, and warning users while enhancing long-term wearing comfortability. It achieves a posture recognition accuracy of 96.6% using the random forest classifier, which is higher than the logistic regression (95.5%) and decision tree (94.3%) classifiers. The TENG-based SPMV offers a reliable solution in the healthcare system for non-invasive and long-term monitoring, promoting the development of triboelectric-based wearable electronics.

Electronic Supplementary Material

Video
12274_2022_4409_MOESM1_ESM.avi
12274_2022_4409_MOESM2_ESM.avi
12274_2022_4409_MOESM3_ESM.avi
12274_2022_4409_MOESM4_ESM.avi
12274_2022_4409_MOESM5_ESM.avi
12274_2022_4409_MOESM6_ESM.avi
Download File(s)
12274_2022_4409_MOESM7_ESM.pdf (852.4 KB)

References

1

Rau, T. R.; Plaschke, K.; Weigand, M. A.; Maier, C.; Schramm, C. Automatic detection of venous air embolism using transesophageal echocardiography in patients undergoing neurological surgery in the semi-sitting position: A pilot study. J. Clin. Monit. Comput. 2021, 35, 1103–1109.

2

Li, F. K.; Sheng, C. S.; Zhang, D. Y.; An, D. W.; Huang, J. F.; Li, Y.; Wang, J. G. Resting heart rate in the supine and sitting positions as predictors of mortality in an elderly Chinese population. J. Hypertens. 2019, 37, 2024–2031.

3

Liutkus, D.; Gouraud, J. P.; Blanloeil, Y.; ANARLF. The sitting position in neurosurgical anaesthesia: A survey of French practice. Ann. Fr. Anesth. Reanim. 2003, 22, 296–300.

4

Wu, C. C.; Chiu, C. C.; Yeh, C. Y. Development of wearable posture monitoring system for dynamic assessment of sitting posture. Phys. Eng. Sci. Med. 2020, 43, 187–203.

5

Roh, J.; Park, H. J.; Lee, K. J.; Hyeong, J.; Kim, S.; Lee, B. Sitting posture monitoring system based on a low-cost load cell using machine learning. Sensors 2018, 18, 208.

6

Kim, Y. M.; Son, Y.; Kim, W.; Jin, B.; Yun, M. H. Classification of children’s sitting postures using machine learning algorithms. Appl. Sci. 2018, 8, 1280.

7

Chang, I. S.; Mak, S.; Armanfard, N.; Boger, J.; Grace, S. L.; Arcelus, A.; Chessex, C.; Mihailidis, A. Quantification of resting-state ballistocardiogram difference between clinical and non-clinical populations for ambient monitoring of heart failure. IEEE J. Transl. Eng. Health Med. 2020, 8, 2700811.

8

Zhang, C.; Fan, Y. J.; Li, H. Y.; Li, Y. Y.; Zhang, L.; Cao, S. B.; Kuang, S. Y.; Zhao, Y. B.; Chen, A. H.; Zhu, G. et al. Fully rollable lead-free poly (vinylidene fluoride)-niobate-based nanogenerator with ultra-flexible nano-network electrodes. ACS Nano 2018, 12, 4803–4811.

9

Ning, C.; Dong, K.; Gao, W. C.; Sheng, F. F.; Cheng, R. W.; Jiang, Y.; Yi, J.; Ye, C. Y.; Peng, X.; Wang, Z. L. Dual-mode thermal-regulating and self-powered pressure sensing hybrid smart fibers. Chem. Eng. J. 2021, 420, 129650.

10

Jiang, Y.; Dong, K.; An, J.; Liang, F.; Yi, J.; Peng, X.; Ning, C.; Ye, C. Y.; Wang, Z. L. UV-protective, self-cleaning, and antibacterial nanofiber-based triboelectric nanogenerators for self-powered human motion monitoring. ACS. Appl. Mater. Interfaces 2021, 13, 11205–11214.

11

Dong, K.; Hu, Y. F.; Yang, J.; Kim, S. W.; Hu, W. G.; Wang, Z. L. Smart textile triboelectric nanogenerators: Current status and perspectives. MRS Bull. 2021, 46, 512–521.

12

Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

13

Li, L. L.; Wang, D. P.; Zhang, D.; Ran, W. H.; Yan, Y. X.; Li, Z. X.; Wang, L. L.; Shen, G. Z. Near-infrared light triggered self-powered mechano-optical communication system using wearable photodetector textile. Adv. Funct. Mater. 2021, 31, 2104782.

14

Wang, D. Y.; Wang, L. L.; Shen, G. Z. Nanofiber/nanowires-based flexible and stretchable sensors. J. Semicond. 2020, 41, 041605.

15

Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.

16

Peng, X.; Dong, K.; Ye, C. Y.; Jiang, Y.; Zhai, S. Y.; Cheng, R. W.; Liu, D.; Gao, X. P.; Wang, J.; Wang, Z. L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624.

17

Jiang, Q.; Yuan, H. L.; Dong, K.; Lin, J. H.; Wu, L. W.; Tang, Y. H. Continuous and scalable manufacture of aggregation induced emission luminogen fibers for anti-counterfeiting and hazardous gas detecting smart textiles. Mater. Des. 2021, 205, 109761.

18

Jang, K. I.; Li, K.; Chung, H. U.; Xu, S.; Jung, H. N.; Yang, Y. Y.; Kwak, J. W.; Jung, H. H.; Song, J.; Yang, C. et al. Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 2017, 8, 15894.

19

Hong, S. Y.; Lee, Y. H.; Park, H.; Jin, S. W.; Jeong, Y. R.; Yun, J.; You, I.; Zi, G.; Ha, J. S. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv. Mater. 2016, 28, 930–935.

20

Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

21

Roh, E.; Hwang, B. U.; Kim, D.; Kim, B. Y.; Lee, N. E. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 2015, 9, 6252–6261.

22

Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017, 12, 907–913.

23

Liu, Y.; Hu, Y.; Zhao, J. J.; Wu, G.; Tao, X. M.; Chen, W. Self-powered piezoionic strain sensor toward the monitoring of human activities. Small 2016, 12, 5074–5080.

24

Ahmad, J.; Andersson, H.; Sidén, J. Screen-printed piezoresistive sensors for monitoring pressure distribution in wheelchair. IEEE Sens. J. 2019, 19, 2055–2063.

25

Salvatore, G. A.; Münzenrieder, N.; Kinkeldei, T.; Petti, L.; Zysset, C.; Strebel, I.; Büthe, L.; Tröster, G. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat. Commun. 2014, 5, 2982.

26

Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826.

27

Gu, L. L.; Tavakoli, M. M.; Zhang, D. Q.; Zhang, Q. P.; Waleed, A.; Xiao, Y. Q.; Tsui, K. H. ; Lin, Y. J.; Liao, L.; Wang, J. N. et al. D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater 2016, 28, 9713–9721.

28

Yang, Z. W.; Pang, Y. K.; Zhang, L. M.; Lu, C. X.; Chen, J.; Zhou, T.; Zhang, C.; Wang, Z. L. Tribotronic transistor array as an active tactile sensing system. ACS Nano 2016, 10, 10912–10920.

29

Pang, C.; Koo, J. H.; Nguyen, A.; Caves, J. M.; Kim, M. G.; Chortos, A.; Kim, K.; Wang, P. J.; Tok, J. B. H.; Bao, Z. N. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 2015, 27, 634–640.

30

Lai, Y. C.; Deng, J. N.; Zhang, S. L.; Niu, S. M.; Guo, H. Y.; Wang, Z. L. Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv. Funct. Mater. 2017, 27, 1604462.

31

Jeong, J. W.; Kim, M. K.; Cheng, H. Y.; Yeo, W. H.; Huang, X.; Liu, Y.; Zhang, Y.; Huang, Y.; Rogers, J. A. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv. Healthc. Mater. 2014, 3, 642–658.

32

Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

33

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

34

Wang, Z. L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502.

35

Wang, Z. L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 2020, 68, 104272.

36

Luo, J. J.; Wang, Z. L. Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Mater. 2019, 23, 617–628.

37

Dong, K.; Deng, J. N.; Zi, Y. L.; Wang, Y. C.; Xu, C.; Zou, H. Y.; Ding, W. B.; Dai, Y. J.; Gu, B. H.; Sun, B. Z. et al. 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater 2017, 29, 1702468.

38

Cong, Z. F.; Guo, W. B.; Guo, Z. H.; Chen, Y. H.; Liu, M. M.; Hou, T. T.; Pu, X.; Hu, W. G.; Wang, Z. L. Stretchable coplanar self-charging power textile with resist-dyeing triboelectric nanogenerators and microsupercapacitors. ACS Nano 2020, 14, 5590–5599.

39

Gunawardhana, K. R. S. D.; Wanasekara, N. D.; Dharmasena, R. D. I. G. Towards truly wearable systems: Optimizing and scaling up wearable triboelectric nanogenerators. iScience 2020, 23, 101360.

40

Li, C. Y.; Liu, D.; Xu, C. Q.; Wang, Z. M.; Shu, S.; Sun, Z. R.; Tang, W.; Wang, Z. L. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nat. Commun. 2021, 12, 2950.

41

Petropoulos, A.; Sikeridis, D.; Antonakopoulos, T. Wearable smart health advisors: An IMU-enabled posture monitor. IEEE Consum. Electron. Mag. 2020, 9, 20–27.

42

Kim, W.; Jin, B.; Choo, S.; Nam, C. S.; Yun, M. H. Designing of smart chair for monitoring of sitting posture using convolutional neural networks. Data Technol. Appl. 2019, 53, 142–155.

43

Jung, Y. H.; Hong, S. K.; Wang, H. S.; Han, J. H.; Pham, T. X.; Park, H.; Kim, J.; Kang, S.; Yoo, C. D.; Lee, K. J. Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 2020, 32, 1904020.

44

Ran, X.; Wang, C.; Xiao, Y.; Gao, X. L.; Zhu, Z. Y.; Chen, B. A portable sitting posture monitoring system based on a pressure sensor array and machine learning. Sens. Actuators A 2021, 331, 112900.

45

Loke, G.; Khudiyev, T.; Wang, B.; Fu, S.; Payra, S.; Shaoul, Y.; Fung, J.; Chatziveroglou, I.; Chou, P. W.; Chinn, I. et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 2021, 12, 3317.

Nano Research
Pages 8389-8397
Cite this article:
Jiang Y, An J, Liang F, et al. Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction. Nano Research, 2022, 15(9): 8389-8397. https://doi.org/10.1007/s12274-022-4409-0
Topics:

1571

Views

63

Crossref

58

Web of Science

62

Scopus

3

CSCD

Altmetrics

Received: 16 February 2022
Revised: 06 April 2022
Accepted: 07 April 2022
Published: 16 February 2022
© Tsinghua University Press 2022
Return