Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Graphene nanoribbons (GNRs) have attracted great research interest because of their widely tunable and unique electronic properties. The required atomic precision of GNRs can be realized via on-surface synthesis method. In this work, through a surface assisted reaction we have longitudinally fused the pyrene-based graphene nanoribbons (pGNR) of different lengths by a pentagon ring junction, and built a molecular junction structure on Au (111). The electronic properties of the structure are studied by scanning tunneling spectroscopy (STS) combined with tight binding (TB) calculations. The pentagon ring junction shows a weak electronic coupling effect on graphene nanoribbons, which makes the electronic properties of the two different graphene nanoribbons connected by a pentagon ring junction analogous to type I semiconductor heterojunctions.
Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.
Chen, Y. C.; De Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 2013, 7, 6123–6128.
Ritter, K. A.; Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 2009, 8, 235–242.
Shams, S. S.; Zhang, R. Y.; Zhu, J. Graphene synthesis: A review. Mater. Sci. Pol. 2015, 33, 566–578.
Narita, A.; Wang, X. Y.; Feng, X. L.; Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 2015, 44, 6616–6643.
Zhou, X. H.; Yu, G. Modified engineering of graphene nanoribbons prepared via on-surface synthesis. Adv. Mater. 2020, 32, 1905957.
Lipton-Duffin, J. A.; Ivasenko, O.; Perepichka, D. F.; Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 2009, 5, 592–597.
Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.
Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules-oligomers-nanowires-graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 2015, 137, 1802–1808.
Zhang, H. M.; Lin, H. P.; Sun, K. W.; Chen, L.; Zagranyarski, Y.; Aghdassi, N.; Duhm, S.; Li, Q.; Zhong, D. Y.; Li, Y. Y. et al. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 4022–4025.
Barin, G. B.; Fairbrother, A.; Rotach, L.; Bayle, M.; Paillet, M.; Liang, L. B.; Meunier, V.; Hauert, R.; Dumslaff, T.; Narita, A. et al. Surface-synthesized graphene nanoribbons for room temperature switching devices: Substrate transfer and ex situ characterization. ACS Appl. Nano Mater. 2019, 2, 2184–2192.
Teeter, J. D.; Costa, P. S.; Pour, M. M.; Miller, D. P.; Zurek, E.; Enders, A.; Sinitskii, A. Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on Cu (111). Chem. Commun. 2017, 53, 8463–8466.
Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.
Rizzo, D. J.; Veber, G.; Jiang, J. W.; McCurdy, R.; Cao, T.; Bronner, C.; Chen, T.; Louie, S. G.; Fischer, F. R.; Crommie, M. F. Inducing metallicity in graphene nanoribbons via zero-mode superlattices. Science 2020, 369, 1597–1603.
Sun, Q.; Gröning, O.; Overbeck, J.; Braun, O.; Perrin, M. L.; Barin, G. B.; El Abbassi, M.; Eimre, K.; Ditler, E.; Daniels, C. et al. Massive Dirac fermion behavior in a low bandgap graphene nanoribbon near a topological phase boundary. Adv. Mater. 2020, 32, 1906054.
Carbonell-Sanromà, E.; Hieulle, J.; Vilas-Varela, M.; Brandimarte, P.; Iraola, M.; Barragán, A.; Li, J. C.; Abadia, M.; Corso, M.; Sánchez-Portal, D. et al. Doping of graphene nanoribbons via functional group edge modification. ACS Nano 2017, 11, 7355–7361.
Kawai, S.; Nakatsuka, S.; Hatakeyama, T.; Pawlak, R.; Meier, T.; Tracey, J.; Meyer, E.; Foster, A. S. Multiple heteroatom substitution to graphene nanoribbon. Sci. Adv. 2018, 4, eaar7181.
Pedramrazi, Z.; Chen, C.; Zhao, F. Z.; Cao, T.; Nguyen, G. D.; Omrani, A. A.; Tsai, H. Z.; Cloke, R. R.; Marangoni, T.; Rizzo, D. J. et al. Concentration dependence of dopant electronic structure in bottom-up graphene nanoribbons. Nano Lett. 2018, 18, 3550–3556.
Palacios, J. J.; Fernández-Rossier, J.; Brey, L.; Fertig, H. A. Electronic and magnetic structure of graphene nanoribbons. Semicond. Sci. Technol. 2010, 25, 033003.
Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801.
Wakabayashi, K.; Sasaki, K. I.; Nakanishi, T.; Enoki, T. Electronic states of graphene nanoribbons and analytical solutions. Sci. Technol. Adv. Mater. 2010, 11, 054504.
Nilius, N.; Wallis, T. M.; Ho, W. Development of one-dimensional band structure in artificial gold chains. Science 2002, 297, 1853–1856.
Söde, H.; Talirz, L.; Gröning, O.; Pignedoli, C. A.; Berger, R.; Feng, X. L.; Müllen, K.; Fasel, R.; Ruffieux, P. Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy. Phys. Rev. B 2015, 91, 045429.
Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 2009, 325, 1110–1114.
Kimouche, A.; Ervasti, M. M.; Drost, R.; Halonen, S.; Harju, A.; Joensuu, P. M.; Sainio, J.; Liljeroth, P. Ultra-narrow metallic armchair graphene nanoribbons. Nat. Commun. 2015, 6, 10177.
Li, J. C.; Sanz, S.; Corso, M.; Choi, D. J.; Peña, D.; Frederiksen, T.; Pascual, J. I. Single spin localization and manipulation in graphene open-shell nanostructures. Nat. Commun. 2019, 10, 200.
Mishra, S.; Beyer, D.; Berger, R.; Liu, J. Z.; Gröning, O.; Urgel, J. I.; Müllen, K.; Ruffieux, P.; Feng, X. L.; Fasel, R. Topological defect-induced magnetism in a nanographene. J. Am. Chem. Soc. 2020, 142, 1147–1152.
Zheng, Y. Q.; Li, C.; Zhao, Y.; Beyer, D.; Wang, G. Y.; Xu, C. Y.; Yue, X. L.; Chen, Y. P.; Guan, D. D.; Li, Y. Y. et al. Engineering of magnetic coupling in nanographene. Phys. Rev. Lett. 2020, 124, 147206.
Lawrence, J.; Brandimarte, P.; Berdonces-Layunta, A.; Mohammed, M. S. G.; Grewal, A.; Leon, C. C.; Sánchez-Portal, D.; De Oteyza, D. G. Probing the magnetism of topological end states in 5-armchair graphene nanoribbons. ACS Nano 2020, 14, 4499–4508.
Merino-Díez, N.; Garcia-Lekue, A.; Carbonell-Sanromà, E.; Li, J. C.; Corso, M.; Colazzo, L.; Sedona, F.; Sánchez-Portal, D.; Pascual, J. I.; De Oteyza, D. G. Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au (111). ACS Nano 2017, 11, 11661–11668.
1203
Views
120
Downloads
9
Crossref
8
Web of Science
8
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.