PDF (2.1 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access

Molecular heterostructure by fusing graphene nanoribbons of different lengths through a pentagon ring junction

Qiang Sun1,2()Hao Jiang1Yuyi Yan1Roman Fasel2,3Pascal Ruffieux2()
Materials Genome Institute, Shanghai University, Shanghai 200444, China
Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern 3012, Switzerland
Show Author Information

Graphical Abstract

View original image Download original image
Through a surface-assisted reaction we have longitudinally fused pyrene-based graphene nanoribbons (pGNR) of different lengths via a 5-membered ring, and electronically characterized the resulting molecular junction.

Abstract

Graphene nanoribbons (GNRs) have attracted great research interest because of their widely tunable and unique electronic properties. The required atomic precision of GNRs can be realized via on-surface synthesis method. In this work, through a surface assisted reaction we have longitudinally fused the pyrene-based graphene nanoribbons (pGNR) of different lengths by a pentagon ring junction, and built a molecular junction structure on Au (111). The electronic properties of the structure are studied by scanning tunneling spectroscopy (STS) combined with tight binding (TB) calculations. The pentagon ring junction shows a weak electronic coupling effect on graphene nanoribbons, which makes the electronic properties of the two different graphene nanoribbons connected by a pentagon ring junction analogous to type I semiconductor heterojunctions.

Electronic Supplementary Material

Download File(s)
12274_2022_4410_MOESM1_ESM.pdf (1.4 MB)

References

1

Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

2

Chen, Y. C.; De Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 2013, 7, 6123–6128.

3

Ritter, K. A.; Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 2009, 8, 235–242.

4

Shams, S. S.; Zhang, R. Y.; Zhu, J. Graphene synthesis: A review. Mater. Sci. Pol. 2015, 33, 566–578.

5

Narita, A.; Wang, X. Y.; Feng, X. L.; Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 2015, 44, 6616–6643.

6

Zhou, X. H.; Yu, G. Modified engineering of graphene nanoribbons prepared via on-surface synthesis. Adv. Mater. 2020, 32, 1905957.

7

Lipton-Duffin, J. A.; Ivasenko, O.; Perepichka, D. F.; Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 2009, 5, 592–597.

8

Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

9

Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules-oligomers-nanowires-graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 2015, 137, 1802–1808.

10

Zhang, H. M.; Lin, H. P.; Sun, K. W.; Chen, L.; Zagranyarski, Y.; Aghdassi, N.; Duhm, S.; Li, Q.; Zhong, D. Y.; Li, Y. Y. et al. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 4022–4025.

11

Barin, G. B.; Fairbrother, A.; Rotach, L.; Bayle, M.; Paillet, M.; Liang, L. B.; Meunier, V.; Hauert, R.; Dumslaff, T.; Narita, A. et al. Surface-synthesized graphene nanoribbons for room temperature switching devices: Substrate transfer and ex situ characterization. ACS Appl. Nano Mater. 2019, 2, 2184–2192.

12

Teeter, J. D.; Costa, P. S.; Pour, M. M.; Miller, D. P.; Zurek, E.; Enders, A.; Sinitskii, A. Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on Cu (111). Chem. Commun. 2017, 53, 8463–8466.

13

Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.

14

Rizzo, D. J.; Veber, G.; Jiang, J. W.; McCurdy, R.; Cao, T.; Bronner, C.; Chen, T.; Louie, S. G.; Fischer, F. R.; Crommie, M. F. Inducing metallicity in graphene nanoribbons via zero-mode superlattices. Science 2020, 369, 1597–1603.

15

Sun, Q.; Gröning, O.; Overbeck, J.; Braun, O.; Perrin, M. L.; Barin, G. B.; El Abbassi, M.; Eimre, K.; Ditler, E.; Daniels, C. et al. Massive Dirac fermion behavior in a low bandgap graphene nanoribbon near a topological phase boundary. Adv. Mater. 2020, 32, 1906054.

16

Carbonell-Sanromà, E.; Hieulle, J.; Vilas-Varela, M.; Brandimarte, P.; Iraola, M.; Barragán, A.; Li, J. C.; Abadia, M.; Corso, M.; Sánchez-Portal, D. et al. Doping of graphene nanoribbons via functional group edge modification. ACS Nano 2017, 11, 7355–7361.

17

Kawai, S.; Nakatsuka, S.; Hatakeyama, T.; Pawlak, R.; Meier, T.; Tracey, J.; Meyer, E.; Foster, A. S. Multiple heteroatom substitution to graphene nanoribbon. Sci. Adv. 2018, 4, eaar7181.

18

Pedramrazi, Z.; Chen, C.; Zhao, F. Z.; Cao, T.; Nguyen, G. D.; Omrani, A. A.; Tsai, H. Z.; Cloke, R. R.; Marangoni, T.; Rizzo, D. J. et al. Concentration dependence of dopant electronic structure in bottom-up graphene nanoribbons. Nano Lett. 2018, 18, 3550–3556.

19

Palacios, J. J.; Fernández-Rossier, J.; Brey, L.; Fertig, H. A. Electronic and magnetic structure of graphene nanoribbons. Semicond. Sci. Technol. 2010, 25, 033003.

20

Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801.

21

Wakabayashi, K.; Sasaki, K. I.; Nakanishi, T.; Enoki, T. Electronic states of graphene nanoribbons and analytical solutions. Sci. Technol. Adv. Mater. 2010, 11, 054504.

22

Nilius, N.; Wallis, T. M.; Ho, W. Development of one-dimensional band structure in artificial gold chains. Science 2002, 297, 1853–1856.

23

Söde, H.; Talirz, L.; Gröning, O.; Pignedoli, C. A.; Berger, R.; Feng, X. L.; Müllen, K.; Fasel, R.; Ruffieux, P. Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy. Phys. Rev. B 2015, 91, 045429.

24

Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 2009, 325, 1110–1114.

25

Kimouche, A.; Ervasti, M. M.; Drost, R.; Halonen, S.; Harju, A.; Joensuu, P. M.; Sainio, J.; Liljeroth, P. Ultra-narrow metallic armchair graphene nanoribbons. Nat. Commun. 2015, 6, 10177.

26

Li, J. C.; Sanz, S.; Corso, M.; Choi, D. J.; Peña, D.; Frederiksen, T.; Pascual, J. I. Single spin localization and manipulation in graphene open-shell nanostructures. Nat. Commun. 2019, 10, 200.

27

Mishra, S.; Beyer, D.; Berger, R.; Liu, J. Z.; Gröning, O.; Urgel, J. I.; Müllen, K.; Ruffieux, P.; Feng, X. L.; Fasel, R. Topological defect-induced magnetism in a nanographene. J. Am. Chem. Soc. 2020, 142, 1147–1152.

28

Zheng, Y. Q.; Li, C.; Zhao, Y.; Beyer, D.; Wang, G. Y.; Xu, C. Y.; Yue, X. L.; Chen, Y. P.; Guan, D. D.; Li, Y. Y. et al. Engineering of magnetic coupling in nanographene. Phys. Rev. Lett. 2020, 124, 147206.

29

Lawrence, J.; Brandimarte, P.; Berdonces-Layunta, A.; Mohammed, M. S. G.; Grewal, A.; Leon, C. C.; Sánchez-Portal, D.; De Oteyza, D. G. Probing the magnetism of topological end states in 5-armchair graphene nanoribbons. ACS Nano 2020, 14, 4499–4508.

30

Merino-Díez, N.; Garcia-Lekue, A.; Carbonell-Sanromà, E.; Li, J. C.; Corso, M.; Colazzo, L.; Sedona, F.; Sánchez-Portal, D.; Pascual, J. I.; De Oteyza, D. G. Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au (111). ACS Nano 2017, 11, 11661–11668.

Nano Research
Pages 8465-8469
Cite this article:
Sun Q, Jiang H, Yan Y, et al. Molecular heterostructure by fusing graphene nanoribbons of different lengths through a pentagon ring junction. Nano Research, 2022, 15(9): 8465-8469. https://doi.org/10.1007/s12274-022-4410-7
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return