AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption

Juhua Luo( )Mengna FengZiyang DaiChenye JiangWei YaoNaixin Zhai
School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
Show Author Information

Graphical Abstract

The features of nitrogen doped carbon (NDC)/MoS2 composite including interconnected porous structure, nitrogen dopant, and appropriate electrical conductivity gave rise to the polarization, multiple reflection, multiple scattering, and impedance matching, resulting in the outstanding electromagnetic wave absorption performance.

Abstract

Designing electromagnetic wave absorption (EMWA) materials with wide bandwidth, strong absorption, and light weight is still a great challenge for practical applications. Herein, the novel nitrogen doped carbon (NDC)/MoS2 composite with rationally designed composition and structure was developed. The NDC particles were introduced into MoS2 nanosheets through the calcination of ZIF-8 precursor and consequent hydrothermal process. A series of characterizations were carried out to investigate the physical properties of the as-prepared nanocomposites. The NDC particles exhibited the shape of rhombic dodecahedron with the size of about 500 nm, which were decorated on flower-shaped MoS2 with the size of about 3 μm. With the increasing NDC content, the absorbing properties of NDC/MoS2 composites increased firstly and then decreased. The features of NDC/MoS2 composite including interconnected porous structure, nitrogen dopant, and appropriate electrical conductivity gave rise to the polarization, multiple reflection, multiple scattering, and impedance matching, resulting in the outstanding EMWA performance. With a filler loading ratio of 30 wt.%, the optimized EMWA property can be achieved when the mass ratio of NDC to MoS2 was adjusted to be 1:1. At a coating thickness of 3.0 mm, the effective EMWA bandwidth (< −10 dB) reached 6.08 GHz (8.56–14.64 GHz). These satisfactory achievements provide a way for the reasonable design of high-performance EMWA and new ideas for future research on wideband EMWA.

Electronic Supplementary Material

Download File(s)
12274_2022_4411_MOESM1_ESM.pdf (398.1 KB)

References

1

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

2

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

3

Cheng, R. R.; Wang, Y.; Di, X. C.; Lu, Z.; Wang, P.; Ma, M. L.; Ye, J. R. Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J. Colloid Interface Sci. 2022, 609, 224–234.

4

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

5

Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

6

Xing, L. S.; Li, X.; Wu, Z. C.; Yu, X. F.; Liu, J. W.; Wang, L.; Cai, C. Y.; You, W. B.; Chen, G. Y.; Ding, J. J. et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 2020, 379, 122241.

7

Quan, B.; Shi, W. H.; Ong, S. J. H.; Lu, X. C.; Wang, P. L. Y.; Ji, G. B.; Guo, Y. F.; Zheng, L. R.; Xu, Z. C. J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 2019, 29, 1901236.

8

Zhang, D. Q.; Liang, S.; Chai, J. X.; Liu, T. T.; Yang, X. Y.; Wang, H.; Cheng, J. Y.; Zheng, G. P.; Cao, M. S. Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J. Phys. Chem. Solids 2019, 134, 77–82.

9

Feng, Z.; Yang, P. P.; Wen, G. S.; Li, H. B.; Liu, Y.; Zhao, X. C. One-step synthesis of MoS2 nanoparticles with different morphologies for electromagnetic wave absorption. Appl. Surf. Sci. 2020, 502, 144129.

10

Wang, B. C.; Ruan, W. J.; Mu, C. P.; Nie, A. M.; Wen, F. S.; Xiang, J. Y.; Liu, Z. Y. Direct one-step synthesis of CoFex@Co@C hybrids derived from a metal organic framework for a lightweight and high-performance microwave absorber. Nanotechnology 2020, 31, 095703.

11

Lv, H. L.; Li, Y.; Jia, Z. R.; Wang, L. J.; Guo, X. Q.; Zhao, B.; Zhang, R. Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption. Compos. Part B Eng. 2020, 196, 108122.

12

Ma, T.; Cui, Y.; Sha, Y. L.; Liu, L.; Ge, J. W.; Meng, F. D.; Wang, F. H. Facile synthesis of hierarchically porous rGO/MnZn ferrite composites for enhanced microwave absorption performance. Synth. Met. 2020, 265, 116407.

13

Yan, L. L.; Zhang, M.; Zhao, S. C.; Sun, T. J.; Zhang, B.; Cao, M. S.; Qin, Y. Wire-in-tube ZnO@carbon by molecular layer deposition: Accurately tunable electromagnetic parameters and remarkable microwave absorption. Chem. Eng. J. 2020, 382, 122860.

14

Qiu, Y.; Yang, H. B.;Wen, B.; Ma, L.; Lin, Y. Facile synthesis of nickel/carbon nanotubes hybrid derived from metal organic framework as a lightweight, strong and efficient microwave absorber. J. Colloid Interface Sci. 2021, 590, 561–570.

15

Sun, D. R.; Kim, D. P. Hydrophobic MOFs@metal nanoparticles@COFs for interfacially confined photocatalysis with high efficiency. ACS Appl. Mater. Interfaces 2020, 12, 20589–20595.

16

Zeng, Q. W.; Wang, L.; Li, X.; You, W. B.; Zhang, J.; Liu, X. H.; Wang, M.; Che, R. C. Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber. Appl. Surf. Sci. 2021, 538, 148051.

17

Wang, Y. L.; Yang, S. H.; Wang, H. Y.; Wang, G. S.; Sun, X. B.; Yin, P. G. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 2020, 167, 485–494.

18

Li, Y. F.; Fu, Y. Y.; Liu, W. B.; Song, Y. H.; Wang, L. Hollow Co-Co3O4@CNTs derived from ZIF-67 for lithium ion batteries. J. Alloys Compd. 2019, 784, 439–446.

19

Li, Z. N.; Han, X. J.; Ma, Y.; Liu, D. W.; Wang, Y. H.; Xu, P.; Li, C. L.; Du, Y. C. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustainable Chem. Eng. 2018, 6, 8904–8913.

20

Wang, L.; Wen, B.; Yang, H. B.; Qiu, Y.; He, N. R. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105958.

21

Fan, R. L.; Zhou, J.; Xun, W.; Cheng, S. B.; Vanka, S.; Cai, T. Y.; Ju, S.; Mi, Z. T.; Shen, M. R. Highly efficient and stable Si photocathode with hierarchical MoS2/Ni3S2 catalyst for solar hydrogen production in alkaline media. Nano Energy 2020, 71, 104631.

22

Yan, T. Y.; Wang, J.; Wu, Q. L.; Huo, S. Q.; Duan, H. J. MOF-derived graphitized porous carbon/Fe-Fe3C nanocomposites with broadband and enhanced microwave absorption performance. J. Mater. Sci. Mater. Electron. 2019, 30, 12012–12022.

23

Liu, P. B.; Gao, S.; Wang, Y.; Zhou, F. T.; Huang, Y.; Huang, W. H.; Chang, N. H. Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 2020, 170, 503–516.

24

Zhang, F.; Zhang, W. D.; Zhu, W. F.; Cheng, B.; Qiu, H.; Qi, S. H. Core-shell nanostructured CS/MoS2: A promising material for microwave absorption. Appl. Surf. Sci. 2019, 463, 182–189.

25

Zhang, X. C.; Zhang, X.; Yuan, H. R.; Li, K. Y.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, S.; Chen, Y. J. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123208.

26

Huang, S.; Wang, L.; Li, Y. C.; Liang, C. B.; Zhang, J. L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

27

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

28

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

29

Chen, S.; Zheng, Y; Zhang B.; Feng Y. Y.; Zhu, J. X.; Xu, J. S.; Zhang, C.; Feng, W.; Liu, T. X. Cobalt, nitrogen-doped porous carbon nanosheet-assembled flowers from metal-coordinated covalent organic polymers for efficient oxygen reduction. ACS Appl. Mater. Interfaces 2019, 11, 1384–1393.

30

Zhu, T.; Shen, W.; Wang, X. Y.; Song, Y. F.; Wang, W. Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers. Chem. Eng. J. 2019, 378, 122159.

31

Wen, B.; Yang, H. B.; Lin, Y.; Wang, L.; Ma, L.; Qiu, Y. In situ anchoring carbon nanotubes on the Ni/C nanosheets with controllable thickness for boosting the electromagnetic waves absorption. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106044.

32

Kuang, B. Y.; Ning, M. Q.; Wang, L.; Li, J. B.; Wang, C. Z.; Hou, Z. L.; Zhao, Y. J.; Jin, H. B. Biopolymer nanofiber/reduced graphene oxide aerogels for tunable and broadband high-performance microwave absorption. Compos. Part B Eng. 2019, 161, 1–9.

33

Chen, Z. H.; Tian, K. H.; Zhang, C.; Shu, R. W.; Zhu, J. B.; Liu, Y.; Huang, Y. N.; Liu, X. W. In-situ hydrothermal synthesis of NiCo alloy particles@hydrophilic carbon cloth to construct corncob-like heterostructure for high-performance electromagnetic wave absorbers. J. Colloid Interface Sci. 2022, 616, 823–833.

34

Liu, D. W.; Du, Y. C.; Wang, F. Y.; Wang, Y. H.; Cui, L. R.; Zhao, H. H.; Han, X. J. MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 2020, 157, 478–485.

35

Wang, H. Y.; Sun, X. B.; Yang, S. H.; Zhao, P. Y.; Zhang, X. J.; Wang, G. S.; Huang, Y. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 2021, 13, 206.

36

Huang, W. H.; Gao, W. M.; Zuo, S. W.; Zhang, L. X.; Pei, K.; Liu, P. B.; Che, R. C.; Zhang, H. B. Hollow MoC/NC sphere for electromagnetic wave attenuation: Direct observation of interfacial polarization on nanoscale hetero-interfaces. J. Mater. Chem. A 2022, 10, 1290–1298.

37

Huang, W. H.; Qiu, Q.; Yang, X. F.; Zuo, S. W.; Bai, J. N.; Zhang, H. B.; Pei, K.; Che, R. C. Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption. Nano-Micro Lett. 2022, 14, 96.

38

Liu, W.; Tan, S. J.; Yang, Z. H.; Ji, G. B. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 2018, 10, 31610–31622.

39

Liu, W.; Liu, L.; Yang, Z. H.; Xu, J. J.; Hou, Y. L.; Ji, G. B. A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 2018, 10, 8965–8975.

40

Zhang, W. D.; Zhang, X.; Wu, H. J.; Yan, H. X.; Qi, S. H. Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials. J. Alloys Compd. 2018, 751, 34–42.

41

Gai, L. X.; Zhao, Y. M.; Song, G. L.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R.; Li, Z. C. Construction of core-shell PPy@MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: Assembly and enhanced mechanism. Compos. Part A Appl. Sci. Manuf. 2020, 136, 105965.

42

Yan, J; Huang, Y.; Han, X. P.; Gao, X. G.; Liu, P. B. Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Compos. Part B Eng. 2019, 163, 67–76.

43

Wang, Y. Z.; Xu, J.; He, P.; Liu, X. Y.; Zuo, P. Y.; Ma, W. J.; Zhuang, Q. X. Construction of Co/C@MoS2 core-shell nanocubes with enhanced electromagnetic-wave absorption performance. J. Alloys Compd. 2022, 905, 164080.

44

Gu, W. H.; Lv, J.; Quan, B.; Liang, X. H.; Zhang, B. S.; Ji, G. B. Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method. J. Alloys Compd. 2019, 806, 983–991.

Nano Research
Pages 5781-5789
Cite this article:
Luo J, Feng M, Dai Z, et al. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Research, 2022, 15(7): 5781-5789. https://doi.org/10.1007/s12274-022-4411-6
Topics:
Part of a topical collection:

3373

Views

126

Crossref

129

Web of Science

129

Scopus

15

CSCD

Altmetrics

Received: 15 March 2022
Revised: 08 April 2022
Accepted: 11 April 2022
Published: 29 April 2022
© Tsinghua University Press 2022
Return