AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

1D-2D nanohybrid-based textile strain sensor to boost multiscale deformative motion sensing performance

Xiaoting LiKeng Huat KohJiaqi XueChun Ho SoNa XiaoChung TinKing WaiChiu Lai( )
Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
Show Author Information

Graphical Abstract

The crepe roll-inspired strain sensor shows excellent sensitivities from micro-scale to large-scale deformations. It can be integrated into wearable fabric for digital light-emitting diode (LED) display and smart glove for proprioception of multi-joint finger bending, and it can also be coupled with endoscopic robot and then used for proprioception of the antagonistic flexion/extension motions of the endoscopic robot.

Abstract

The development of strain sensors with both superior sensitivity (gauge factor (GF) > 100) and broad strain-sensing range (> 50% strain) is still a grand challenge. Materials, which demonstrate significant structural deformation under microscale motion, are required to offer high sensitivity. Structural connection of materials upon large-scale motion is demanded to widen strain-sensing range. However, it is hard to achieve both features simultaneously. Herein, we design a crepe roll structure-inspired textile yarn-based strain sensor with one-dimensional (1D)-two-dimensional (2D) nanohybrid strain-sensing sheath, which possesses superior stretchability. This ultrastretchable strain sensor exhibits a wide and stable strain-sensing range from micro-scale to large-scale (0.01%–125%), and superior sensitivity (GF of 139.6 and 198.8 at 0.01% and 125%, respectively) simultaneously. The strain sensor is structurally constructed by a superelastic 1D-structured core elastomer polyurethane yarn (PUY), a novel high conductive crepe roll-structured (CRS) 1D-2D nanohybrid multilayer sheath which assembled by 1D nanomaterials silver nanowires (AgNWs) working as bridges to connect adjacent layers and 2D nanomaterials graphene nanoplates (GNPs) offering brittle lamellar structure, and a thin polydopamine (PDA) wrapping layer providing protection in exterior environment. During the stretching/deformation process, microcracks originate and propagate in the GNPs lamellar structure enable resistance to change significantly, while AgNWs bridge adjacent GNPs to accommodate applied stress partially and boost strain. The 1D crepe roll structure-inspired strain sensor demonstrates multifunctionality in multiscale deformative motion detection, such as respiratory motions of Sprague–Dawleyw rat, flexible digital display, and proprioception of multi-joint finger bending and antagonistic flexion/extension motions of its flexible continuum body.

Electronic Supplementary Material

Video
12274_2022_4413_MOESM2_ESM.mp4
12274_2022_4413_MOESM3_ESM.mp4
12274_2022_4413_MOESM4_ESM.mp4
12274_2022_4413_MOESM5_ESM.mp4
12274_2022_4413_MOESM6_ESM.mp4
Download File(s)
12274_2022_4413_MOESM1_ESM.pdf (2.2 MB)

References

1

Chortos, A.; Liu, J.; Bao, Z. N. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950.

2

Wang, X. D.; Dong, L.; Zhang, H. L.; Yu, R. M.; Pan, C. F.; Wang, Z. L. Recent progress in electronic skin. Adv. Sci. 2015, 2, 1500169.

3

Liu, M. M.; Pu, X.; Jiang, C. Y.; Liu, T.; Huang, X.; Chen, L. B.; Du, C. H.; Sun, J. M.; Hu, W. G.; Wang, Z. L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017, 29, 1703700.

4

Zhang, B. C.; Jie, J. S.; Shao, Z. B.; Huang, S. Y.; He, L.; Zhang, X. H. One-step growth of large-area silicon nanowire fabrics for high-performance multifunctional wearable sensors. Nano Res. 2019, 12, 2723–2728.

5
Khudiyev, T. ; Lee, J. T. ; Cox, J. R. ; Argentieri, E. ; Loke, G. ; Yuan, R. ; Noel, G. H. ; Tatara, R. ; Yu, Y. ; Logan, F. et al. 100 m long thermally drawn supercapacitor fibers with applications to 3D printing and textiles. Adv. Mater. 2020, 32, 2004971.
6

Aaryashree; Sahoo, S.; Walke, P.; Nayak, S. K.; Rout, C. S.; Late, D. J. Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Res. 2021, 14, 3669–3689.

7

Yuan, H.; Wang, G.; Zhao, Y. X.; Liu, Y.; Wu, Y.; Zhang, Y. G. A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 2020, 13, 1686–1692.

8

Zhang, Z. T.; Cui, L. Y.; Shi, X.; Tian, X. C. R.; Wang, D. P.; Gu, C. N.; Chen, E.; Cheng, X. L.; Xu, Y. F.; Hu, Y. J. et al. Textile display for electronic and brain-interfaced communications. Adv. Mater. 2018, 30, 1800323.

9

Seyedin, S.; Zhang, P.; Naebe, M.; Qin, S.; Chen, J.; Wang, X. G.; Razal, J. M. Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 2019, 6, 219–249.

10

Tan, Y. S.; Yang, K.; Wang, B.; Li, H.; Wang, L.; Wang, C. X. High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application. Nano Res. 2021, 14, 3969–3976.

11

Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463.

12

Ge, J.; Sun, L.; Zhang, F. R.; Zhang, Y.; Shi, L. A.; Zhao, H. Y.; Zhu, H. W.; Jiang, H. L.; Yu, S. H. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv. Mater. 2016, 28, 722–728.

13

Lee, J.; Zambrano, B. L.; Woo, J.; Yoon, K.; Lee, T. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: Materials, fabrications, and applications. Adv. Mater. 2020, 32, 1902532.

14

Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H. J.; Algadi, H.; Al-Sayari, S.; Kim, D. E. et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 2015, 25, 3114–3121.

15

Souri, H.; Bhattacharyya, D. Highly stretchable and wearable strain sensors using conductive wool yarns with controllable sensitivity. Sens. Actuators A Phys. 2019, 285, 142–148.

16

Luo, N. Q.; Huang, Y.; Liu, J.; Chen, S. C.; Wong, C. P.; Zhao, N. Hollow-structured graphene-silicone-composite-based piezoresistive sensors: Decoupled property tuning and bending reliability. Adv. Mater. 2017, 29, 1702675.

17

Boutry, C. M.; Nguyen, A.; Lawal, Q. O.; Chortos, A.; Rondeau-Gagné, S.; Bao, Z. N. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv. Mater. 2015, 27, 6954–6961.

18

Gerratt, A. P.; Michaud, H. O.; Lacour, S. P. Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 2015, 25, 2287–2295.

19

Cai, Y. C.; Shen, J.; Dai, Z. Y.; Zang, X. X.; Dong, Q. C.; Guan, G. F.; Li, L. J.; Huang, W.; Dong, X. C. Extraordinarily stretchable all-carbon collaborative nanoarchitectures for epidermal sensors. Adv. Mater. 2017, 29, 1606411.

20

Tee, B. C. K.; Chortos, A.; Dunn, R. R.; Schwartz, G.; Eason, E.; Bao, Z. N. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 2014, 24, 5427–5434.

21

Chou, H. H.; Nguyen, A.; Chortos, A.; To, J. W. F.; Lu, C. E.; Mei, J. G.; Kurosawa, T.; Bae, W. G.; Tok, J. B. H.; Bao, Z. N. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 2015, 6, 8011.

22

Wu, W. Z.; Wen, X. N.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957.

23

Ning, C.; Tian, L.; Zhao, X. Y.; Xiang, S. X.; Tang, Y. J.; Liang, E. J.; Mao, Y. C. Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics. J. Mater. Chem. A 2018, 6, 19143–19150.

24

Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

25

Li, Y. X.; Han, D. Y.; Jiang, C. J.; Xie, E. Q.; Han, W. H. A facile realization scheme for tactile sensing with a structured silver nanowire-PDMS composite. Adv. Mater. Technol. 2019, 4, 1800504.

26

Wang, X. D.; Zhang, Y. F.; Zhang, X. J.; Huo, Z. H.; Li, X. Y.; Que, M. L.; Peng, Z. C.; Wang, H.; Pan, C. F. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 2018, 30, 1706738.

27

Oh, J.; Yang, J. C.; Kim, J. O.; Park, H.; Kwon, S. Y.; Lee, S.; Sim, J. Y.; Oh, H. W.; Kim, J.; Park, S. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano 2018, 12, 7546–7553.

28

Bai, H. D.; Li, S.; Barreiros, J.; Tu, Y. Q.; Pollock, C. R.; Shepherd, R. F. Stretchable distributed fiber-optic sensors. Science 2020, 370, 848–852.

29

Su, C. I.; Maa, M. C.; Yang, H. Y. Structure and performance of elastic core–spun yarn. Text. Res. J. 2004, 74, 607–610.

30

Serizawa, T.; Kamimura, S.; Kawanishi, N.; Akashi, M. Layer-by-layer assembly of poly(vinyl alcohol) and hydrophobic polymers based on their physical adsorption on surfaces. Langmuir 2002, 18, 8381–8385.

31

Ryu, J. H.; Messersmith, P. B.; Lee, H. Polydopamine surface chemistry: A decade of discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540.

32

Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L.; Park, B.; Suh, K. Y.; Kim, T. I.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222–226.

33

Souri, H.; Bhattacharyya, D. Wearable strain sensors based on electrically conductive natural fiber yarns. Mater. Des. 2018, 154, 217–227.

34

Wang, C. Y.; Xia, K. L.; Jian, M. Q.; Wang, H. M.; Zhang, M. C.; Zhang, Y. Y. Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J. Mater. Chem. C 2017, 5, 7604–7611.

35

Pang, Y.; Tian, H.; Tao, L. Q.; Li, Y. X.; Wang, X. F.; Deng, N. Q.; Yang, Y.; Ren, T. L. Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 2016, 8, 26458–26462.

36

Huang, Y.; Zhao, Y. N.; Wang, Y.; Guo, X. H.; Zhang, Y. Y.; Liu, P.; Liu, C. X.; Zhang, Y. G. Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions. Smart Mater. Struct. 2018, 27, 035013.

37

Li, X. T.; Koh, K. H.; Farhan, M.; Lai, K. W. C. An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles. Nanoscale 2020, 12, 4110–4118.

38

Hang, C. Z.; Zhao, X. F.; Xi, S. Y.; Shang, Y. H.; Yuan, K. P.; Yang, F.; Wang, Q. G.; Wang, J. C.; Zhang, D. W.; Lu, H. L. Highly stretchable and self-healing strain sensors for motion detection in wireless human–machine interface. Nano Energy 2020, 76, 105064.

39

Gifari, M. W.; Naghibi, H.; Stramigioli, S.; Abayazid, M. A review on recent advances in soft surgical robots for endoscopic applications. Int. J. Med. Rob. Comput. Assist. Surg. 2019, 15, e2010.

Nano Research
Pages 8398-8409
Cite this article:
Li X, Koh KH, Xue J, et al. 1D-2D nanohybrid-based textile strain sensor to boost multiscale deformative motion sensing performance. Nano Research, 2022, 15(9): 8398-8409. https://doi.org/10.1007/s12274-022-4413-4
Topics:

740

Views

22

Crossref

17

Web of Science

20

Scopus

1

CSCD

Altmetrics

Received: 01 August 2021
Revised: 01 April 2022
Accepted: 08 April 2022
Published: 04 June 2022
© Tsinghua University Press 2022
Return