AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding

Wang Yang1,§Hengxuan Bai1,§Bo Jiang1Chaonan Wang1Weimin Ye1Zhengxuan Li1Chong Xu1Xiaobai Wang2( )Yongfeng Li1( )
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
Department of Materials Application Research, AVIC Manufacturing Technology Institute, Beijing 100024, China

§ Wang Yang and Hengxuan Bai contributed equally to this work.

Show Author Information

Graphical Abstract

Densified, lightweight, flexible, and large-size graphene/polyurethane composite films are fabricated, and yield high electrical conductivity, good cross-plane thermal conductivity (1.13 W/m·K), and excellent electromagnetic interference shielding performance (73.4 dB).

Abstract

High-performance electromagnetic interference (EMI) shielding materials with flexibility, excellent mechanical property, and thermal conductivity are highly desired for fifth-generation communications devices. Graphene exhibits tremendous potential due to its high electrical conductivity and unique lamellar structure. However, the construction of densified graphene structure in polymer matrix is still challenging. Herein, we develop a graphene/waterborne polyurethane (G/WPU) flexible film with densified and ordered layer-structure for using as an EMI shielding material. By virtue of the polyvinylpyrrolidone modified strategy and facile liquid phase ball-milling treatment, the graphene nanosheets can be efficiently dispersed into the WPU substrate and tightly connected between each other via internal interactions. Benefiting from the relatively low defects and densified structure of graphene, the resultant G/WPU film yields a high electrical conductivity of 1,004.5 S/m, and a tensile strength of around 48.5 MPa. As a consequence, it achieves an average EMI shielding effectiveness of over 30 dB in the X-band with a thickness of merely 0.15 mm and the value is further enhanced to 73.4 dB at 0.9 mm with a low density of 1.4 g/cm3, offering over 99.99999% shielding of incident electromagnetic waves. More importantly, this G/WPU film also exhibits a high cross-plane thermal conductivity of about 1.13 W/(m·K). Thus, this work develops a high-performance EMI shielding material with both good capacity of heat transmission, but also provides a facile strategy for designing next-generation advanced, lightweight, flexible, and multifunction shielding materials.

Electronic Supplementary Material

Download File(s)
12274_2022_4414_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Yang, W.; Jiang, B.; Liu, Z. H.; Li, R.; Hou, L. Q.; Li, Z. X.; Duan, Y. L.; Yan, X. R.; Yang, F.; Li, Y. F. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption. J. Mater. Sci. Technol. 2021, 70, 214–223.

[2]

Yang, W.; Li, R.; Jiang, B.; Wang, T. H.; Hou, L. Q.; Li, Z. X.; Liu, Z. C.; Yang, F.; Li, Y. F. Production of hierarchical porous carbon nanosheets from cheap petroleum asphalt toward lightweight and high-performance electromagnetic wave absorbents. Carbon 2020, 166, 218–226.

[3]

Li, J. Z.; Xu, Z. K.; Li, T.; Zhi, D. D.; Chen, Y.; Lu, Q. H.; Wang, J. J.; Liu, Q.; Meng, F. B. Multifunctional antimony tin oxide/reduced graphene oxide aerogels with wideband microwave absorption and low infrared emissivity. Compos. Part B:Eng. 2022, 231, 109565.

[4]

Zhu, S. P.; Cheng, Q.; Yu, C. C.; Pan, X. C.; Zuo, X. B.; Liu, J. F.; Chen, M. L.; Li, W. W.; Li, Q.; Liu, L. W. Flexible Fe3O4/graphene foam/poly dimethylsiloxane composite for high-performance electromagnetic interference shielding. Compos. Sci. Technol. 2020, 189, 108012.

[5]

Li, T.; Zhi, D. D.; Guo, Z. H.; Li, J. Z.; Chen, Y.; Meng, F. B. 3D porous biomass-derived carbon materials: Biomass sources, controllable transformation and microwave absorption application. Green Chem. 2022, 24, 647–674.

[6]

Zhi, D. D.; Li, T.; Qi, Z. H.; Li, J. Z.; Tian, Y. R.; Deng, W. T.; Meng, F. B. Core–shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496.

[7]

Wu, N. N.; Hu, Q.; Wei, R. B.; Mai, X.; Naik, N.; Pan, D.; Guo, Z. H.; Shi, Z. J. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon 2021, 176, 88–105.

[8]

Wei, L. F.; Ma, J. Z.; Zhang, W. B.; Bai, S. L.; Ren, Y. J.; Zhang, L.; Wu, Y. K.; Qin, J. B. pH triggered hydrogen bonding for preparing mechanically strong, electromagnetic interference shielding and thermally conductive waterborne polymer/graphene@polydopamine composites. Carbon 2021, 181, 212–224.

[9]

Li, J. J.; Huang, L.; Yuan, Y.; Li, Y. B.; He, X. D. Mechanically strong, thermally conductive and flexible graphene composite paper for exceptional electromagnetic interference shielding. Mater. Sci. Eng. :B 2021, 263, 114893.

[10]

Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.

[11]

Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402.

[12]

Gupta, S.; Tai, N.-H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 2019, 152, 159–187.

[13]

Han, G. J.; Ma, Z. G.; Zhou, B.; He, C. G.; Wang, B.; Feng, Y. Z.; Ma, J. M.; Sun, L.; Liu, C. T. Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. J. Colloid Interface Sci. 2021, 583, 571–578.

[14]

Yao, Y. Y.; Jin, S. H.; Ma, X. L.; Yu, R.; Zou, H. M.; Wang, H. J.; Lv, X. J.; Shu, Q. H. Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy. Compos. Sci. Technol. 2020, 200, 108457.

[15]

Jiang, D. W.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z. C.; Shao, Q.; Wang, C.; Liu, H.; Lu, N. et al. Electromagnetic interference shielding polymers and nanocomposites-a review. Polym. Rev. 2019, 59, 280–337.

[16]

Jia, L. C.; Zhou, C. G.; Sun, W. J.; Xu, L.; Yan, D. X.; Li, Z. M. Water-based conductive ink for highly efficient electromagnetic interference shielding coating. Chem. Eng. J. 2020, 384, 123368.

[17]

Qi, Q.; Ma, L.; Zhao, B.; Wang, S.; Liu, X. B.; Lei, Y. J.; Park, C. B. An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Interfaces 2020, 12, 36568–36577.

[18]

Lin, S. C.; Ma, C. C. M.; Hsiao, S. T.; Wang, Y. S.; Yang, C. Y.; Liao, W. H.; Li, S. M.; Wang, J. A.; Cheng, T. Y.; Lin, C. W. et al. Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene. Appl. Surf. Sci. 2016, 385, 436–444.

[19]

Liu, H. J.; Liang, C. Z.; Chen, J. J.; Huang, Y. W.; Cheng, F.; Wen, F. B.; Xu, B. B.; Wang, B. Novel 3D network porous graphene nanoplatelets/Fe3O4/epoxy nanocomposites with enhanced electromagnetic interference shielding efficiency. Compos. Sci. Technol. 2019, 169, 103–109.

[20]

Zhang, Y. P.; Zhou, C. G.; Sun, W. J.; Wang, T.; Jia, L. C.; Yan, D. X.; Li, Z. M. Injection molding of segregated carbon nanotube/polypropylene composite with enhanced electromagnetic interference shielding and mechanical performance. Compos. Sci. Technol. 2020, 197, 108253.

[21]

Sharif, F.; Arjmand, M.; Moud, A. A.; Sundararaj, U.; Roberts, E. P. L. Segregated hybrid poly(methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2017, 9, 14171–14179.

[22]

Gopakumar, D. A.; Pai, A. R.; Pottathara, Y. B.; Pasquini, D.; de Morais, L. C.; Abdul Khalil H.P.S.; Nzihou, A.; Thomas, S. Flexible papers derived from polypyrrole deposited cellulose nanofibers for enhanced electromagnetic interference shielding in gigahertz frequencies. J. Appl. Polym. Sci. 2021, 138, 50262.

[23]

Lakshmi, K.; John, H.; Mathew, K. T.; Joseph, R.; George, K. E. Microwave absorption, reflection and EMI shielding of PU-PANI composite. Acta Mater. 2009, 57, 371–375.

[24]

Wang, Y. T.; Peng, H. K.; Li, T. T.; Shiu, B. C.; Ren, H. T.; Zhang, X. F.; Lou, C. W.; Lin, J. H. MXene-coated conductive composite film with ultrathin, flexible, self-cleaning for high-performance electromagnetic interference shielding. Chem. Eng. J. 2021, 412, 128681.

[25]

Zhang, W. B.; Wei, L. F.; Ma, J. Z.; Bai, S. L. Exfoliation and defect control of graphene oxide for waterborne electromagnetic interference shielding coatings. Compos. Part A 2020, 132, 105838.

[26]

Khodiri, A. A.; Al-Ashry, M. Y.; El-Shamy, A. G. Novel hybrid nanocomposites based on polyvinyl alcohol/graphene/magnetite nanoparticles for high electromagnetic shielding performance. J. Alloys Compd. 2020, 847, 156430.

[27]

Li, Y. L.; Zhou, B.; Shen, Y.; He, C. G.; Wang, B.; Liu, C. T.; Feng, Y. Z.; Shen, C. Y. Scalable manufacturing of flexible, durable Ti3C2Tx MXene/Polyvinylidene fluoride film for multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. Compos. Part B:Eng. 2021, 217, 108902.

[28]

Liu, F.; Li, Y. C.; Hao, S.; Cheng, Y.; Zhan, Y. H.; Zhang, C. M.; Meng, Y. Y.; Xie, Q.; Xia, H. S. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohyd. Polym. 2020, 243, 116467.

[29]

Yang, R. L.; Gui, X. C.; Yao, L.; Hu, Q. M.; Yang, L. L.; Zhang, H.; Yao, Y. T.; Mei, H.; Tang, Z. K. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 66.

[30]

Li, L.; Xu, J. C.; Li, G. H.; Jia, X. L.; Li, Y. F.; Yang, F.; Zhang, L. Q.; Xu, C. M.; Gao, J. S.; Liu, Y. et al. Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation. Chem. Eng. J. 2016, 284, 78–84.

[31]

Hsiao, S. T.; Ma, C. C. M.; Tien, H. W.; Liao, W. H.; Wang, Y. S.; Li, S. M.; Huang, Y. C. Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 2013, 60, 57–66.

[32]

Wei, Q. W.; Pei, S. F.; Qian, X. T.; Liu, H. P.; Liu, Z. B.; Zhang, W. M.; Zhou, T. Y.; Zhang, Z. C.; Zhang, X. F.; Cheng, H. M. et al. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 2020, 32, 1907411.

[33]

Tian, K. H.; Su, Z.; Wang, H.; Tian, X. Y.; Huang, W. Q.; Xiao, C. N-doped reduced graphene oxide/waterborne polyurethane composites prepared by in situ chemical reduction of graphene oxide. Compos. Part A 2017, 94, 41–49.

[34]

Pavlou, C.; Pastore Carbone, M. G.; Manikas, A. C.; Trakakis, G.; Koral, C.; Papari, G.; Andreone, A.; Galiotis, C. Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 2021, 12, 4655.

[35]

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

[36]

Wan, S. J.; Li, X.; Chen, Y.; Liu, N. N.; Du, Y.; Dou, S. X.; Jiang, L.; Cheng, Q. F. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99.

[37]

Lin, J. X.; Chen, D. Q.; Dong, J.; Chen, G. H. Preparation of polyvinylpyrrolidone-decorated hydrophilic graphene via in situ ball milling. J. Mater. Sci. 2015, 50, 8057–8063.

[38]

Zhang, W. B.; Wei, L. F.; Ma, Z. L.; Fan, Q. Q.; Ma, J. Z. Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon 2021, 177, 412–426.

[39]

Hou, L. Q.; Yang, W.; Xu, X. W.; Deng, B. J.; Chen, Z.; Wang, S.; Tian, J. B.; Yang, F.; Li, Y. F. In-situ activation endows the integrated Fe3C/Fe@nitrogen-doped carbon hybrids with enhanced pseudocapacitance for electrochemical energy storage. Chem. Eng. J. 2019, 375, 122061.

[40]

Yang, W.; Deng, B. J.; Hou, L. Q.; Tian, J. B.; Tang, Y. S.; Wang, S.; Yang, F.; Li, Y. F. N, S codoped hierarchical porous graphene nanosheets derived from petroleum asphalt via in situ texturing strategy for high-performance supercapacitors. Ind. Eng. Chem. Res. 2019, 58, 4487–4494.

[41]

You, X.; Feng, Q.; Yang, J. S.; Huang, K.; Hu, J. B.; Dong, S. M. Preparation of high concentration graphene dispersion with low boiling point solvents. J. Nanopart. Res. 2019, 21, 19.

[42]

Loría-Bastarrachea, M. I.; Herrera-Kao, W.; Cauich-Rodríguez, J. V.; Cervantes-Uc, J. M.; Vázquez-Torres, H. Ávila-Ortega, A. A TG/FTIR study on the thermal degradation of poly (vinyl pyrrolidone). J. Therm. Anal. Calorim. 2011, 104, 737–742.

[43]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[44]

Wan, Y. J.; Wang, X. Y.; Li, X. M.; Liao, S. Y.; Lin, Z. Q.; Hu, Y. G.; Zhao, T.; Zeng, X. L.; Li, C. H.; Yu, S. H. et al. Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 2020, 14, 14134–14145.

[45]

Peng, M. Y.; Qin, F. X. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 2021, 130, 225108.

[46]

Xu, J. D.; Li, R. S.; Ji, S. R.; Zhao, B. C.; Cui, T. R.; Tan, X. C.; Gou, G. Y.; Jian, J. M.; Xu, H. K.; Qiao, Y. C. et al. Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 2021, 15, 8907–8918.

[47]

Zeng, Z. H.; Chen, M. J.; Jin, H.; Li, W. W.; Xue, X.; Zhou, L. C.; Pei, Y. M.; Zhang, H.; Zhang, Z. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 2016, 96, 768–777.

[48]

Wang, Y.; Wang, W.; Xu, R.; Zhu, M. F.; Yu, D. Flexible, durable and thermal conducting thiol-modified rGO-WPU/cotton fabric for robust electromagnetic interference shielding. Chem. Eng. J. 2019, 360, 817–828.

[49]

Li, R.; Shan, Z. H. Research on structural features and thermal conductivity of waterborne polyurethane. Prog. Org. Coat. 2017, 104, 271–279.

[50]

Zhuang, Y. F.; Zheng, K.; Cao, X. Y.; Zhang, J. N.; Ye, G.; Ma, Y. Y.; Xiang, Q.; Ma, Y. M. Graphene/naphthalene sulfonate composite films with high electrical and thermal conductivities for energy storage and thermal management in nanoscale electronic devices. ACS Appl. Nano Mater. 2021, 4, 13123–13131.

Nano Research
Pages 9926-9935
Cite this article:
Yang W, Bai H, Jiang B, et al. Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Research, 2022, 15(11): 9926-9935. https://doi.org/10.1007/s12274-022-4414-3
Topics:
Part of a topical collection:

1418

Views

41

Crossref

38

Web of Science

37

Scopus

4

CSCD

Altmetrics

Received: 30 January 2022
Revised: 09 April 2022
Accepted: 11 April 2022
Published: 28 May 2022
© Tsinghua University Press 2022
Return