AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

AgAuSe quantum dots with absolute photoluminescence quantum yield of 87.2%: The effect of capping ligand chain length

Ziqiang Sun1,2Cheng Liu3Hongchao Yang2( )Xiaohu Yang2Yejun Zhang2Hongzhen Lin2Youyong Li3Qiangbin Wang1,2( )
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
Show Author Information

Graphical Abstract

By optimizing the length of thiol ligand to enhance the passivation ability for surface defects, the absolute photoluminescence quantum yield (PLQY) of AgAuSe quantum dots (QDs) alloyed by parent Ag2Se QDs was improved to 87.2% at 970 nm, achieving ultrasensitive in vivo angiography imaging.

Abstract

Surface ligands of colloidal quantum dots (QDs) have a profound influence on their surface states, which has been verified in the studies of the effect of ligand head groups on the photoluminescence (PL) properties of QDs. However, the investigation of the ligand chain length is limited. Here, we systematically explored the effect of chain length on the Ag2Se QDs by selecting three ligands, 1-octanethiol (OTT), 1-dodecanethiol (DDT), and 1-hexadecanethiol (HDT), with diverse chain lengths. We found that the PL intensity of Ag2Se QDs increased with the decrease of the ligand chain length due to the enhanced passivation of surface defects emerging from the robust QD-ligand interface binding affinity and the weaker hydrophobic chain–chain interaction. Subsequently, AgAuSe QDs terminated with OTT were obtained by alloying parent OTT-Ag2Se QDs with Au precursor with a record absolute PL quantum yield (PLQY) of 87.2% at 970 nm, facilitating ultrasensitive in vivo angiography imaging in a nude mouse model. We expect that our finding of the important role of the ligand chain length on the optical properties of QDs will be suggestive to the design and synthesis of high-quality QDs, and also look forward to the clinical applications of the ultra-bright AgAuSe QDs.

Electronic Supplementary Material

Download File(s)
12274_2022_4417_MOESM1_ESM.pdf (1.3 MB)

References

1

Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

2

Weiss, E. A. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots. Acc. Chem. Res. 2013, 46, 2607–2615.

3

Kirkwood, N.; Monchen, J. O. V.; Crisp, R. W.; Grimaldi, G.; Bergstein, H. A. C.; Du Fossé, I.; Van Der Stam, W.; Infante, I.; Houtepen, A. J. Finding and fixing traps in II-VI and III-V colloidal quantum dots: The importance of Z-type ligand passivation. J. Am. Chem. Soc. 2018, 140, 15712–15723.

4

Li, Y.; Pu, C. D.; Peng, X. G. Surface activation of colloidal indium phosphide nanocrystals. Nano Res. 2017, 10, 941–958.

5

Kumar, S.; Jagielski, J.; Marcato, T.; Solari, S. F.; Shih, C. J. Understanding the ligand effects on photophysical, optical, and electroluminescent characteristics of hybrid lead halide perovskite nanocrystal solids. J. Phys. Chem. Lett. 2019, 10, 7560–7567.

6

Battaglia, D.; Peng, X. G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027–1030.

7

Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002, 41, 2368–2371.

8

Yang, H. C.; Li, R. F.; Zhang, Y. J.; Yu, M. X.; Wang, Z.; Liu, X.; You, W. W.; Tu, D. T.; Sun, Z. Q.; Zhang, R. et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window. J. Am. Chem. Soc. 2021, 143, 2601–2607.

9

Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470–1471.

10

Yang, Y.; Qin, H. Y.; Jiang, M. W.; Lin, L.; Fu, T.; Dai, X. L.; Zhang, Z. X.; Niu, Y.; Cao, H. J.; Jin, Y. Z. et al. Entropic ligands for nanocrystals: From unexpected solution properties to outstanding processability. Nano Lett. 2016, 16, 2133–2138.

11

Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 2005, 437, 664–670.

12

Krieg, F.; Ochsenbein, S. T.; Yakunin, S.; Ten Brinck, S.; Aellen, P.; Süess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 2018, 3, 641–646.

13

Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

14

Zhang, Y.; Li, G. S.; She, C. K.; Liu, S. H.; Yue, F. Y.; Jing, C. B.; Cheng, Y.; Chu, J. H. Room temperature preparation of highly stable cesium lead halide perovskite nanocrystals by ligand modification for white light-emitting diodes. Nano Res. 2021, 14, 2770–2775.

15

Owen, J. The coordination chemistry of nanocrystal surfaces. Science 2015, 347, 615–616.

16

Houtepen, A. J.; Hens, Z.; Owen, J. S.; Infante, I. On the origin of surface traps in colloidal II-VI semiconductor nanocrystals. Chem. Mater. 2017, 29, 752–761.

17

Grisorio, R.; Debellis, D.; Suranna, G. P.; Gigli, G.; Giansante, C. The dynamic organic/inorganic interface of colloidal PbS quantum dots. Angew. Chem., Int. Ed. 2016, 55, 6628–6633.

18

Hassinen, A.; Moreels, I.; De Nolf, K.; Smet, P. F.; Martins, J. C.; Hens, Z. Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. J. Am. Chem. Soc. 2012, 134, 20705–20712.

19

Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 2013, 135, 18536–18548.

20

Kalyuzhny, G.; Murray, R. W. Ligand effects on optical properties of CdSe nanocrystals. J. Phys. Chem. B 2005, 109, 7012–7021.

21

Stein, J. L.; Mader, E. A.; Cossairt, B. M. Luminescent InP quantum dots with tunable emission by post-synthetic modification with Lewis acids. J. Phys. Chem. Lett. 2016, 7, 1315–1320.

22

Calvin, J. J.; Swabeck, J. K.; Sedlak, A. B.; Kim, Y.; Jang, E.; Alivisatos, A. P. Thermodynamic investigation of increased luminescence in indium phosphide quantum dots by treatment with metal halide salts. J. Am. Chem. Soc. 2020, 142, 18897–18906.

23

Nenon, D. P.; Pressler, K.; Kang, J.; Koscher, B. A.; Olshansky, J. H.; Osowiecki, W. T.; Koc, M. A.; Wang, L. W.; Alivisatos, A. P. Design principles for trap-free CsPbX3 nanocrystals: Enumerating and eliminating surface halide vacancies with softer Lewis bases. J. Am. Chem. Soc. 2018, 140, 17760–17772.

24

Balan, A. D.; Olshansky, J. H.; Horowitz, Y.; Han, H. L.; O’Brien, E. A.; Tang, L.; Somorjai, G. A.; Alivisatos, A. P. Unsaturated ligands seed an order to disorder transition in mixed ligand shells of CdSe/CdS quantum dots. ACS Nano 2019, 13, 13784–13796.

25

Calvin, J. J.; O’Brien, E. A.; Sedlak, A. B.; Balan, A. D.; Alivisatos, A. P. Thermodynamics of composition dependent ligand exchange on the surfaces of colloidal indium phosphide quantum dots. ACS Nano 2021, 15, 1407–1420.

26

Elimelech, O.; Aviv, O.; Oded, M.; Banin, U. A tale of tails: Thermodynamics of CdSe nanocrystal surface ligand exchange. Nano Lett. 2020, 20, 6396–6403.

27

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

28

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

29

Zhu, C. N.; Jiang, P.; Zhang, Z. L.; Zhu, D. L.; Tian, Z. Q.; Pang, D. W. Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl. Mater. Interfaces 2013, 5, 1186–1189.

30

Pearson, R. G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740.

31

Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulovic, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863–5872.

32

Morris-Cohen, A. J.; Vasilenko, V.; Amin, V. A.; Reuter, M. G.; Weiss, E. A. Model for adsorption of ligands to colloidal quantum dots with concentration-dependent surface structure. ACS Nano 2012, 6, 557–565.

33

Lian, W.; Tu, D. T.; Hu, P.; Song, X. R.; Gong, Z. L.; Chen, T.; Song, J. B.; Chen, Z.; Chen, X. Y. Broadband excitable NIR-II luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells. Nano Today 2020, 35, 100943.

34

Santos, H. D. A.; Gutierrez, I. Z.; Shen, Y. L.; Lifante, J.; Ximendes, E.; Laurenti, M.; Méndez-González, D.; Melle, S.; Calderón, O. G.; Cabarcos, E. L. et al. Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging. Nat. Commun. 2020, 11, 2933.

35

Weidman, M. C.; Beck, M. E.; Hoffman, R. S.; Prins, F.; Tisdale, W. A. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 2014, 8, 6363–6371.

36

Li, C. Y.; Wang, Q. B. Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window. ACS Nano 2018, 12, 9654–9659.

37

Li, C. Y.; Li, F.; Zhang, Y. J.; Zhang, W. J.; Zhang, X. E.; Wang, Q. B. Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano 2015, 9, 12255–12263.

38

Chen, M.; Feng, S. J.; Yang, Y. M.; Li, Y. X.; Zhang, J.; Chen, S. Y.; Chen, J. Tracking the in vivo spatio-temporal patterns of neovascularization via NIR-II fluorescence imaging. Nano Res. 2020, 13, 3123–3129.

39

Hu, Z. H.; Fang, C.; Li, B.; Zhang, Z. Y.; Cao, C. G.; Cai, M. S.; Su, S.; Sun, X. W.; Shi, X. J.; Li, C. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 2020, 4, 259–271.

40

Liu, Z. Y.; Liu, A. A.; Fu, H. H.; Cheng, Q. Y.; Zhang, M. Y.; Pan, M. M.; Liu, L. P.; Luo, M. Y.; Tang, B.; Zhao, W. et al. Breaking through the size control dilemma of silver chalcogenide quantum dots via trialkylphosphine-induced ripening: Leading to Ag2Te emitting from 950 to 2,100 nm. J. Am. Chem. Soc. 2021, 143, 12867–12877.

41

Shi, X. L.; Chen, S.; Luo, M. Y.; Huang, B.; Zhang, G. Z.; Cui, R.; Zhang, M. X. Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window. Nano Res. 2020, 13, 2239–2245.

42

Alifu, N.; Zebibula, A.; Zhang, H. Q.; Ni, H. W.; Zhu, L.; Xi, W.; Wang, Y. L.; Zhang, X. L.; Wu, C. F.; Qian, J. NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging. Nano Res. 2020, 13, 2632–2640.

43

Zhong, Y. T.; Ma, Z. R.; Zhu, S. J.; Yue, J. Y.; Zhang, M. X.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1,500 nm. Nat. Commun. 2017, 8, 737.

44

Zhang, X. D.; Wang, H. S.; Antaris, A. L.; Li, L. L.; Diao, S.; Ma, R.; Nguyen, A.; Hong, G. S.; Ma, Z. R.; Wang, J. et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 2016, 28, 6872–6879.

Nano Research
Pages 8555-8563
Cite this article:
Sun Z, Liu C, Yang H, et al. AgAuSe quantum dots with absolute photoluminescence quantum yield of 87.2%: The effect of capping ligand chain length. Nano Research, 2022, 15(9): 8555-8563. https://doi.org/10.1007/s12274-022-4417-0
Topics:

1102

Views

25

Crossref

28

Web of Science

25

Scopus

1

CSCD

Altmetrics

Received: 11 April 2022
Accepted: 11 April 2022
Published: 08 June 2022
© Tsinghua University Press 2022
Return