AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Reliable and broad-range layer identification of Au-assisted exfoliated large area MoS2 and WS2 using reflection spectroscopic fingerprints

Bo Zou1Yu Zhou1Yan Zhou2Yanyan Wu1Yang He1Xiaonan Wang1Jinfeng Yang1Lianghui Zhang1Yuxiang Chen1Shi Zhou3Huaixin Guo4Huarui Sun1( )
School of Science and Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
University of Science and Technology of China, Hefei 230026, China
Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016, China
Show Author Information

Graphical Abstract

The authors propose to use the intensity of exciton-induced reflection peaks to quickly and accurately determine the layer numbers in Au-assisted exfoliated large-area MoS2 and WS2 films in a broad thickness range. The method is based on optical interference supported by Fresnel’s theory calculations and is generic to transition metal dichalcogenides (TMDs) supported on different substrates.

Abstract

The emerging Au-assisted exfoliation technique enables the production of a wealth of large-area and high-quality ultrathin two dimensional (2D) crystals. Fast, damage-free, and reliable determination of the layer number of such 2D films can greatly promote layer-dependent physical studies and device applications. Here, an optical method has been developed for simple, high throughput, and accurate determination of the layer number for Au-assisted exfoliated MoS2 and WS2 films in a broad thickness range. The method is based on quantitative analysis of layer-dependent white light reflection spectra (WLRS), revealing that the intensity of exciton-induced reflection peaks can be used as a clear indicator for identifying the layer number. The simple yet robust method will facilitate fundamental studies on layer-dependent optical, electrical, and thermal properties and device applications of 2D materials. The technique can also be readily combined with photoluminescence (PL) and Raman spectroscopies to study other layer-dependent physical properties of 2D materials.

Electronic Supplementary Material

Download File(s)
12274_2022_4418_MOESM1_ESM.pdf (2.8 MB)

References

1

Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

2

Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.

3

He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803.

4

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

5

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

6

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

7

Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

8

Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Hight Walker, A. R.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.

9

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

10

Huang, Y.; Pan, Y. H.; Yang, R.; Bao, L. H.; Meng, L.; Luo, H. L.; Cai, Y. Q.; Liu, G. D.; Zhao, W. J.; Zhou, Z. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453.

11

Huang, Y.; Sutter, E.; Shi, N. N.; Zheng, J. B.; Yang, T. Z.; Englund, D.; Gao, H. J.; Sutter, P. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 2015, 9, 10612–10620.

12

Huang, Y.; Wang, Y. K.; Huang, X. Y.; Zhang, G. H.; Han, X.; Yang, Y.; Gao, Y.; Meng, L.; Wang, Y. S.; Geng, G. Z. et al. An efficient route to prepare suspended monolayer for feasible optical and electronic characterizations of two‐dimensional materials. InfoMat 2021, 4, e12274.

13
Li Z. W. Ren L. W. Wang S. Y. Huang X. X. Li Q. Y. Lu Z. Y. Ding S. M. Deng H. J. Chen P. A. Lin J. et al Dry exfoliation of large-area 2D monolayer and heterostructure arrays ACS Nano 2021 15 13839 13846 10.1021/acsnano.1c05734

Li, Z. W.; Ren, L. W.; Wang, S. Y.; Huang, X. X.; Li, Q. Y.; Lu, Z. Y.; Ding, S. M.; Deng, H. J.; Chen, P. A.; Lin, J. et al. Dry exfoliation of large-area 2D monolayer and heterostructure arrays. ACS Nano 2021, 15, 13839–13846.

14

Velický, M.; Donnelly, G. E.; Hendren, W. R.; McFarland, S.; Scullion, D.; DeBenedetti, W. J. I.; Correa, G. C.; Han, Y. M.; Wain, A. J.; Hines, M. A. et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 2018, 12, 10463–10472.

15

Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695–3700.

16

Lin, J. D.; Li, H.; Zhang, H.; Chen, W. Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl. Phys. Lett. 2013, 102, 203109.

17

Wang, W. Y.; Klots, A.; Prasai, D.; Yang, Y. M.; Bolotin, K. I.; Valentine, J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015, 15, 7440–7444.

18

Yan, J. H.; Ma, C. R.; Liu, P.; Yang, G. W. Plasmon-induced energy transfer and photoluminescence manipulation in MoS2 with a different number of layers. ACS Photonics 2017, 4, 1092–1100.

19

Zhou, W. J.; Yin, Z. Y.; Du, Y. P.; Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, H.; Wang, J. Y.; Zhang, H. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 2013, 9, 140–147.

20

Roddaro, S.; Pingue, P.; Piazza, V.; Pellegrini, V.; Beltram, F. The optical visibility of graphene: Interference colors of ultrathin graphite on SiO2. Nano Lett. 2007, 7, 2707–2710.

21

Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.

22

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

23

Hao, Y. F.; Wang, Y. Y.; Wang, L.; Ni, Z. H.; Wang, Z. Q.; Wang, R.; Koo, C. K.; Shen, Z. X.; Thong, J. T. Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 2010, 6, 195–200.

24

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

25

Li, X. L.; Han, W. P.; Wu, J. B.; Qiao, X. F.; Zhang, J.; Tan, P. H. Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 2017, 27, 1604468.

26
Li H. Wu J. Huang X. Lu G. Yang J. Lu X. Xiong Q. H. Zhang H. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy ACS Nano 2013 7 10344 10353 10.1021/nn4047474

Li, H.; Wu, J.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Xiong, Q. H.; Zhang, H. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 2013, 7, 10344–10353.

27

Taghavi, N. S.; Gant, P.; Huang, P.; Niehues, I.; Schmidt, R.; Michaelis de Vasconcellos, S.; Bratschitsch, R.; García-Hernández, M.; Frisenda, R.; Castellanos-Gomez, A. Thickness determination of MoS2, MoSe2, WS2 and WSe2 on transparent stamps used for deterministic transfer of 2D materials. Nano Res. 2019, 12, 1691–1695.

28

Zhang, H.; Ran, F. R.; Shi, X. T.; Fang, X. R.; Wu, S. Y.; Liu, Y.; Zheng, X. Q.; Yang, P.; Liu, Y.; Wang, L. et al. Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates. Nanotechnology 2017, 28, 164001.

29

Castellanos-Gomez, A.; Agraït, N.; Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010, 96, 213116.

30

Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465–468.

31

Hu, X. M.; Qiu, C. C.; Liu, D. M. Rapid thin-layer WS2 detection based on monochromatic illumination photographs. Nano Res. 2020, 14, 840–845.

32

Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.

33

Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797.

34

Anzai, Y.; Yamamoto, M.; Genchi, S.; Watanabe, K.; Taniguchi, T.; Ichikawa, S.; Fujiwara, Y.; Tanaka, H. Broad range thickness identification of hexagonal boron nitride by colors. Appl. Phys. Express 2019, 12, 055007.

35

Chen, H. Y.; Fei, W. W.; Zhou, J. X.; Miao, C. Y.; Guo, W. L. Layer identification of colorful black phosphorus. Small 2017, 13, 1602336.

36

Jin, Y.; Rah, Y.; Park, J.; Shim, J.; Yu, K. Rapid and broad-range thickness estimation method of hexagonal boron nitride using Raman spectroscopy and optical microscope. Appl. Phys. Lett. 2020, 116, 081104.

37

Ouyang, W. G.; Liu, X. Z.; Li, Q. Y.; Zhang, Y. Y.; Yang, J. R.; Zheng, Q. S. Optical methods for determining thicknesses of few-layer graphene flakes. Nanotechnology 2013, 24, 505701.

38

Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A. et al. Tin disulfide—an emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743–10755.

39

Benameur, M. M.; Radisavljevic, B.; Héron, J. S.; Sahoo, S.; Berger, H.; Kis, A. Visibility of dichalcogenide nanolayers. Nanotechnology 2011, 22, 125706.

40

Childres, I.; Jauregui, L. A.; Foxe, M.; Tian, J. F.; Jalilian, R.; Jovanovic, I.; Chen, Y. P. Effect of electron-beam irradiation on graphene field effect devices. Appl. Phys. Lett. 2010, 97, 173109.

41

Zhang, L. L.; Yan, H.; Sun, X. Q.; Dong, M. H.; Yildirim, T.; Wang, B. W.; Wen, B.; Neupane, G. P.; Sharma, A.; Zhu, Y. et al. Modulated interlayer charge transfer dynamics in a monolayer TMD/metal junction. Nanoscale 2019, 11, 418–425.

42

Jin, Y.; Yu, K. A review of optics-based methods for thickness and surface characterization of two-dimensional materials. J. Phys. D Appl. Phys. 2021, 54, 393001.

43

Rani, R.; Kundu, A.; Hazra, K. S. Spectral dependent white light reflection mapping of MoS2 flake for improving accuracy of conventional optical thickness profiling. Opt. Mater. 2019, 90, 46–50.

44

Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.

45

Mao, N. N.; Tang, J. Y.; Xie, L. M.; Wu, J. X.; Han, B. W.; Lin, J. J.; Deng, S. B.; Ji, W.; Xu, H.; Liu, K. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 2016, 138, 300–305.

46

Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

47

Zou, B.; Zhou, Y.; Zhang, X.; Zhang, M.; Liu, K.; Gong, M. M.; Sun, H. R. Thickness-dependent ultralow in-plane thermal conductivity of chemical vapor-deposited SnSe2 nanofilms: Implications for thermoelectrics. ACS Appl. Nano Mater. 2020, 3, 10543–10550.

48

Campos-Delgado, J.; Algara-Siller, G.; Santos, C. N.; Kaiser, U.; Raskin, J. P. Twisted Bi-layer graphene: Microscopic rainbows. Small 2013, 9, 3247–3251.

49

Qiao, X. F.; Wu, J. B.; Zhou, L. W.; Qiao, J. S.; Shi, W.; Chen, T.; Zhang, X.; Zhang, J.; Ji, W.; Tan, P. H. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale 2016, 8, 8324–8332.

50

Velický, M.; Rodriguez, A.; Bouša, M.; Krayev, A. V.; Vondráček, M.; Honolka, J.; Ahmadi, M.; Donnelly, G. E.; Huang, F. M.; Abruña, H. D. et al. Strain and charge doping fingerprints of the strong interaction between monolayer MoS2 and gold. J. Phys. Chem. Lett. 2020, 11, 6112–6118.

51

Zhu, L.; Tang, J.; Li, B. C.; Hou, T. Y.; Zhu, Y.; Zhou, J. D.; Wang, Z.; Zhu, X. R.; Yao, Z. P.; Cui, X. et al. Artificial neuron networks enabled identification and characterizations of 2D materials and van der Waals Heterostructures. ACS Nano 2022, 16, 2721–2729.

52

Veshapidze, G.; Trachy, M. L.; Shah, M. H.; DePaola, B. D. Reducing the uncertainty in laser beam size measurement with a scanning edge method. Appl. Opt. 2006, 45, 8197–8199.

53

Zou, B.; Wei, Y. D.; Zhou, Y.; Ke, D. N.; Zhang, X.; Zhang, M.; Yip, C. T.; Chen, X. B.; Li, W. Q.; Sun, H. R. Unambiguous determination of crystal orientation in black phosphorus by angle-resolved polarized Raman spectroscopy. Nanoscale Horiz. 2021, 6, 809–818.

54

Qiu, D. Y.; da Jornada, F. H.; Louie, S. G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 2013, 111, 216805.

55

Jia, G. Y.; Liu, Y.; Gong, J. Y.; Lei, D. Y.; Wang, D. L.; Huang, Z. X. Excitonic quantum confinement modified optical conductivity of monolayer and few-layered MoS2. J. Mater. Chem. C 2016, 4, 8822–8828.

56

Zou, B.; Wu, Z. X.; Zhou, Y.; Zhou, Y.; Wang, J.; Zhang, L. H.; Cao, F.; Sun, H. R. Spectroscopic ellipsometry investigation of Au-assisted exfoliated large-area single-crystalline monolayer MoS2. Phys. Status Solidi 2021, 15, 2100385.

57

Buckley, R. G.; Beaglehole, D. Absorptance of thin films. Appl. Opt. 1977, 16, 2495–2499.

58

Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.

59

Li, Y. L.; Chernikov, A.; Zhang, X.; Rigosi, A.; Hill, H. M.; van der Zande, A. M.; Chenet, D. A.; Shih, E. M.; Hone, J.; Heinz, T. F. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 2014, 90, 205422.

60
Zhang H. Y. Bao C. H. Jiang Z. Y. Zhang K. N. Li H. Chen C. Y. Avila J. Wu Y. Duan W. H. Asensio M. C. et al Resolving deep quantum-well states in atomically thin 2H-MoTe2 flakes by nanospot angle-resolved photoemission spectroscopy Nano Lett. 2018 18 4664 4668 10.1021/acs.nanolett.8b00589

Zhang, H. Y.; Bao, C. H.; Jiang, Z. Y.; Zhang, K. N.; Li, H.; Chen, C. Y.; Avila, J.; Wu, Y.; Duan, W. H.; Asensio, M. C. et al. Resolving deep quantum-well states in atomically thin 2H-MoTe2 flakes by nanospot angle-resolved photoemission spectroscopy. Nano Lett. 2018, 18, 4664–4668.

61

Chen, W. J.; Zhang, R. J.; Zheng, R. X.; Liu, B. L. Out-of-plane resistance switching of 2D Bi2O2Se at the nanoscale. Adv. Funct. Mater. 2021, 31, 2105795.

62

Li, S. L.; Miyazaki, H.; Song, H. S.; Kuramochi, H.; Nakaharai, S.; Tsukagoshi, K. Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano 2012, 6, 7381–7388.

63

Frisenda, R.; Niu, Y.; Gant, P.; Molina-Mendoza, A. J.; Schmidt, R.; Bratschitsch, R.; Liu, J. X.; Fu, L.; Dumcenco, D.; Kis, A. et al. Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials. J. Phys. D Appl. Phys. 2017, 50, 074002.

64

Niu, Y.; Gonzalez-Abad, S.; Frisenda, R.; Marauhn, P.; Drüppel, M.; Gant, P.; Schmidt, R.; Taghavi, N. S.; Barcons, D.; Molina-Mendoza, A. J. et al. Thickness-dependent differential reflectance spectra of monolayer and few-layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials (Basel) 2018, 8, 725.

Nano Research
Pages 8470-8478
Cite this article:
Zou B, Zhou Y, Zhou Y, et al. Reliable and broad-range layer identification of Au-assisted exfoliated large area MoS2 and WS2 using reflection spectroscopic fingerprints. Nano Research, 2022, 15(9): 8470-8478. https://doi.org/10.1007/s12274-022-4418-z
Topics:

886

Views

8

Crossref

8

Web of Science

8

Scopus

1

CSCD

Altmetrics

Received: 06 January 2022
Revised: 10 April 2022
Accepted: 11 April 2022
Published: 03 June 2022
© Tsinghua University Press 2022
Return