AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly stable aqueous zinc-ion batteries enabled by suppressing the dendrite and by-product formation in multifunctional Al3+ electrolyte additive

Xianlin Zhou1Kaixuan Ma1Qianyu Zhang2( )Gongzheng Yang1( )Chengxin Wang1
State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, China
College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
Show Author Information

Graphical Abstract

A robust aqueous zinc-ion battery with continuous operating time over 1,600 h at low current density is developed by an Al3+ additive-based electrolyte. The multifunctional additive has demonstrated the advantages in improving the cycle performances by strengthening the structure stability due to the Al-doped cathode materials, and preventing the by-product and zinc dendrite formation.

Abstract

Rechargeable aqueous zinc-ion batteries (ZIBs) have gained extensive attention owing to the high safety, low cost, and high power/energy densities. But unfortunately the ZIBs universally suffer from the highly damaging series of side reactions, majorly including the insulating products formation, dendritic growth of zinc, and hydrogen evolution. To date there are few reports on the effective strategy that can solve the problems at the same time. Here we propose a novel hybrid electrolyte with Al3+ as additive to construct an aqueous ZIB composed of metallic zinc anode and K0.51V2O5 (KVO) nanoplate cathode. The highly reversible multistep K+/Zn2+-ions co-insertion/extraction in the lamellar structure with large interlayer spacing is clearly evidenced by systematical characterizations. In the presence of Al3+, the insulating basic zinc salts on the cathode surface have been reduced greatly, and the electrochemical potential window has been significantly expanded from 3 to 4.35 V. More interestingly, the Al3+ acts as a dopant embedded into the lattice that strengthens the crystal structure. Benefits from the suppressed zinc dendrite growth, the symmetrical Zn/Zn battery exhibited a satisfactory cycling life over 1,500 h at a high rate of 3 mA·cm–2 in the hybrid electrolyte. As a result, the Zn/KVO batteries delivered a high specific capacity of 210 mAh·g–1 and retained high capacity retention of 91% after 1,600 h at a low current of 100 mA·g–1.

Electronic Supplementary Material

Download File(s)
12274_2022_4419_MOESM1_ESM.pdf (2.8 MB)

References

1

Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.

2

Zeng, X. H.; Hao, J. N.; Wang, Z. J.; Mao, J. F.; Guo, Z. P. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 2019, 20, 410–437.

3

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

4

Zhang, Y. M.; Wu, Y. T.; You, W. Q.; Tian, M. K.; Huang, P. W.; Zhang, Y. F.; Sun, Z. J.; Ma, Y.; Hao, T. Q.; Liu, N. Deeply rechargeable and hydrogen-evolution-suppressing zinc anode in alkaline aqueous electrolyte. Nano Lett. 2020, 20, 4700–4707.

5

Pan, Z. H.; Liu, X. M.; Yang, J.; Li, X.; Liu, Z. L.; Loh, X. J.; Wang, J. Aqueous rechargeable multivalent metal-ion batteries: Advances and challenges. Adv. Energy Mater. 2021, 11, 2100608.

6

Huang, J. H.; Guo, Z. W.; Ma, Y. Y.; Bin, D.; Wang, Y. G.; Xia, Y. Y. Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 2019, 3, 1800272.

7

Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

8

Yang, Q.; Li, Q.; Liu, Z. X.; Wang, D. H.; Guo, Y.; Li, X. L.; Tang, Y. C.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Dendrites in Zn-based batteries. Adv. Mater. 2020, 32, 2001854.

9

Zheng, X. H.; Ahmad, T.; Chen, W. Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries. Energy Storage Mater. 2021, 39, 365–394.

10

Yang, G. Z.; Li, Q.; Ma, K. X.; Hong, C.; Wang, C. X. The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries. J. Mater. Chem. A 2020, 8, 8084–8095.

11

Guo, S.; Qin, L. P.; Zhang, T. S.; Zhou, M.; Zhou, J.; Fang, G. Z.; Liang, S. Q. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 2021, 34, 545–562.

12

Liu, C. X.; Xie, X. S.; Lu, B. G.; Zhou, J.; Liang, S. Q. Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 2021, 6, 1015–1033.

13

Fan, L.; Hu, Y. Y.; Rao, A. M.; Zhou, J.; Hou, Z. H.; Wang, C. X.; Lu, B. A. Prospects of electrode materials and electrolytes for practical potassium-based batteries. Small Methods 2021, 5, e2101131.

14

Ge, J. M.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B. A. Surface-substituted prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 2022, 5, 225–234.

15

Hao, J. N.; Long, J.; Li, B.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Yang, Z. H.; Pang, W. K.; Guo, Z. P. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv. Funct. Mater. 2019, 29, 1903605.

16

Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. A.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. The Three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem., Int. Ed. 2019, 58, 15841–15847.

17

Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656.

18

Guo, X.; Fang, G. Z.; Zhang, W. Y.; Zhou, J.; Shan, L. T.; Wang, L. B.; Wang, C.; Lin, T. Q.; Tang, Y.; Liang, S. Q. Mechanistic insights of Zn2+ storage in sodium vanadates. Adv. Energy Mater. 2018, 8, 1801819.

19

Zhang, Y. M.; Li, H. N.; Huang, S. Z.; Fan, S.; Sun, L. N.; Tian, B. B.; Chen, F. M.; Wang, Y.; Shi, Y. M.; Yang, H. Y. Rechargeable aqueous zinc-ion batteries in MgSO4/ZnSO4 hybrid electrolytes. Nano-Micro Lett. 2020, 12, 60.

20

Ma, L. T.; Chen, S. M.; Li, H. F.; Ruan, Z. H.; Tang, Z. J.; Liu, Z. X.; Wang, Z. F.; Huang, Y.; Pei, Z. X.; Zapien, J. A. et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5, 000-cycle lifespan by a Co(III) rich-electrode. Energy Environ. Sci. 2018, 11, 2521–2530.

21

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

22

Chamoun, M.; Brant, W. R.; Tai, C. W.; Karlsson, G.; Noréus, D. Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions. Energy Storage Mater. 2018, 15, 351–360.

23

Li, N.; Li, G. Q.; Li, C. J.; Yang, H. C.; Qin, G. W.; Sun, X. D.; Li, F.; Cheng, H. M. Bi-cation electrolyte for a 1. 7 V aqueous Zn ion battery. ACS Appl. Mater. Interfaces 2020, 12, 13790–13796.

24

Li, H. F.; Ma, L. T.; Han, C. P.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zhi, C. Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019, 62, 550–587.

25

Hou, Z. G.; Zhang, X. Q.; Li, X. N.; Zhu, Y. C.; Liang, J. W.; Qian, Y. T. Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 2017, 5, 730–738.

26

Chang, G.; Liu, S. J.; Fu, Y. N.; Hao, X.; Jin, W.; Ji, X. B.; Hu, J. G. Inhibition role of trace metal ion additives on zinc dendrites during plating and striping processes. Adv. Mater. Interfaces 2019, 6, 1901358.

27

Ding, J. W.; Gao, H. G.; Ji, D. F.; Zhao, K.; Wang, S. W.; Cheng, F. Y. Vanadium-based cathodes for aqueous zinc-ion batteries: From crystal structures, diffusion channels to storage mechanisms. J. Mater. Chem. A 2021, 9, 5258–5275.

28

Han, M. M.; Qin, L. P.; Liu, Z.; Zhang, L. X.; Li, X. K.; Lu, B. G.; Huang, J. W.; Liang, S. Q.; Zhou, J. Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries. Mater. Today Energy 2021, 20, 100626.

29

Xiao, L. F.; Zhao, Y. Q.; Yang, Y. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method. Electrochim. Acta 2008, 54, 545–550.

30

Luo, M.; Zhang, R.; Gong, Y. Q.; Wang, M.; Chen, Y. B.; Chu, M.; Chen, L. Effects of doping Al on the structure and electrochemical performances of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials. Ionics 2017, 24, 967–976.

31

Zhu, Y. H.; Zhang, Q.; Yang, X.; Zhao, E. Y.; Sun, T.; Zhang, X. B.; Wang, S.; Yu, X.-Q.; Yan, J.-M.; Jiang, Q. Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-Ion batteries. Chem. 2019, 5, 168–179.

32

Islam, S.; Alfaruqi, M. H.; Putro, D. Y.; Soundharrajan, V.; Sambandam, B.; Jo, J.; Park, S.; Lee, S.; Mathew, V.; Kim, J. K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. J. Mater. Chem. A 2019, 7, 20335–20347.

33

Tang, B. Y.; Fang, G. Z.; Zhou, J.; Wang, L. B.; Lei, Y. P.; Wang, C.; Lin, T. Q.; Tang, Y.; Liang, S. Q. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 2018, 51, 579–587.

34

Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

35

Li, Q.; Wei, T. Y.; Ma, K. X.; Yang, G. Z.; Wang, C. X. Boosting the cyclic stability of aqueous zinc-ion battery based on Al-doped V10O24·12H2O cathode materials. ACS Appl. Mater. Interfaces 2019, 11, 20888–20894.

36

Ding, Y. L.; Xie, J.; Cao, G. S.; Zhu, T. J.; Yu, H. M.; Zhao, X. B. Enhanced elevated-temperature performance of Al-doped single-crystalline LiMn2O4 nanotubes as cathodes for lithium ion batteries. J. Phys. Chem. C 2011, 115, 9821–9825.

37

Ming, F. W.; Liang, H. F.; Lei, Y. J.; Kandambeth, S.; Eddaoudi, M.; Alshareef, H. N. Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 2018, 3, 2602–2609.

38

Hu, P.; Zhu, T.; Wang, X. P.; Zhou, X. F.; Wei, X. J.; Yao, X. H.; Luo, W.; Shi, C. W.; Owusu, K. A.; Zhou, L. et al. Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation. Nano Energy 2019, 58, 492–498.

39

Zou, Z. G.; Hou, Z. L.; Wang, J. L.; Gao, Y.; Wan, Z. D.; Han, S. C. Hydrothermal synthesis and electrochemical performance of Al-doped VO2(B) as cathode materials for lithium-ion battery. Int. J. Electrochem. Sci. 2017, 12, 4979–4989.

40

Hu, P.; Yan, M. Y.; Zhu, T.; Wang, X. P.; Wei, X. J.; Li, J. T.; Zhou, L.; Li, Z. H.; Chen, L. N.; Mai, L. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces 2017, 9, 42717–42722.

41

Ding, J. W.; Du, Z. G.; Gu, L. Q.; Li, B.; Wang, L. Z.; Wang, S. W.; Gong, Y. J.; Yang, S. B. Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv. Mater. 2018, 30, 1800762.

42

Hu, P.; Zhu, T.; Wang, X. P.; Wei, X. J.; Yan, M. Y.; Li, J. T.; Luo, W.; Yang, W.; Zhang, W. C.; Zhou, L. et al. Highly durable Na2V6O16·3H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 2018, 18, 1758–1763.

43

Li, Q.; Liu, Y. Y.; Ma, K. X.; Yang, G. Z.; Wang, C. X. In situ Ag nanoparticles reinforced pseudo-Zn-air reaction boosting Ag2V4O11 as high-performance cathode material for aqueous zinc-ion batteries. Small Methods 2019, 3, 1900637.

44

Hu, P.; Zhu, T.; Ma, J. X.; Cai, C. C.; Hu, G. W.; Wang, X. P.; Liu, Z. A.; Zhou, L.; Mai, L. Q. Porous V2O5 microspheres: A high-capacity cathode material for aqueous zinc-ion batteries. Chem. Commun. 2019, 55, 8486–8489.

45

Zhu, K. Y.; Wu, T.; Sun, S. C.; Van Den Bergh, W.; Stefik, M.; Huang, K. Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous zn-ion batteries. Energy Storage Mater. 2020, 29, 60–70.

46

Su, G.; Chen, S. F.; Dong, H. L.; Cheng, Y. F.; Liu, Q.; Wei, H. X.; Ang, E. H.; Geng, H. B.; Li, C. C. Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries. Nanoscale 2021, 13, 2399–2407.

47

Li, R. X.; Guan, C.; Bian, X. F.; Yu, X.; Hu, F. NaV6O15 microflowers as a stable cathode material for high-performance aqueous zinc-ion batteries. RSC Adv. 2020, 10, 6807–6813.

48

Ko, J. S.; Paul, P. P.; Wan, G.; Seitzman, N.; DeBlock, R. H.; Dunn, B. S.; Toney, M. F.; Weker, J. N. NASICON Na3V2(PO4)3 enables quasi-two-stage Na+ and Zn2+ intercalation for multivalent zinc batteries. Chem. Mater. 2020, 32, 3028–3035.

49

Javed, M. S.; Lei, H.; Wang, Z. L.; Liu, B. T.; Cai, X.; Mai, W. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 2020, 70, 104573.

50

Batyrbekuly, D.; Laïk, B.; Pereira Ramos, J. P.; Bakenov, Z.; Baddour-Hadjean, R. A porous puckered V2O5 polymorph as new high performance cathode material for aqueous rechargeable zinc batteries. J. Energy Chem. 2021, 61, 459–468.

51

Jiang, H. M.; Zhang, Y. F.; Xu, L.; Gao, Z. M.; Zheng, J. Q.; Wang, Q. S.; Meng, C. G.; Wang, J. Fabrication of (NH4)2V3O8 nanoparticles encapsulated in amorphous carbon for high capacity electrodes in aqueous zinc ion batteries. Chem. Eng. J. 2020, 382, 122844.

52

He, P.; Zhang, G. B.; Liao, X. B.; Yan, M. Y.; Xu, X.; An, Q. Y.; Liu, J.; Mai, L. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 2018, 8, 1702463.

53

Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanim. J. Am. Chem. Soc. 2013, 135, 4450–4456.

Nano Research
Pages 8039-8047
Cite this article:
Zhou X, Ma K, Zhang Q, et al. Highly stable aqueous zinc-ion batteries enabled by suppressing the dendrite and by-product formation in multifunctional Al3+ electrolyte additive. Nano Research, 2022, 15(9): 8039-8047. https://doi.org/10.1007/s12274-022-4419-y
Topics:

1035

Views

16

Crossref

14

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 20 January 2022
Revised: 20 March 2022
Accepted: 13 April 2022
Published: 14 June 2022
© Tsinghua University Press 2022
Return