Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Little is known about how to precisely promote the selective production of either colloidal semiconductor metal chalcogenide (ME), magic-size clusters (MSCs), or quantum dots (QDs). Recently, a two-pathway model has been proposed to comprehend their evolution; here, we reveal for the first time that the size of precursors plays a decisive role in the selected evolution pathway of MSCs and QDs. With the reaction of cadmium myristate (Cd(MA)2) and tri-n-octylphosphine selenide (SeTOP) in 1-octadecene (ODE) as a model system, the size of Cd precursors was manipulated by the steric hindrance of carboxylic acid (RCOOH) additive. Without RCOOH, the reaction produced both CdSe MSCs and QDs (from 100 to 240 °C). With RCOOH, the reaction produced MSCs or QDs when R was small (such as CH3−) or large (such as C6H5−), respectively. According to the two-pathway model, the selective evolution is attributed to the promotion and suppression of the self-assembly of Cd and Se precursors, respectively. We propose that the addition of carboxylic acid may occur ligand exchange with Cd(MA)2, causing the different sizes of Cd precursor. The results suggest that the size of Cd precursors regulates the self-assemble behavior of the precursors, which dictates the directed evolution of either MSCs or QDs. The present findings bring insights into the two-pathway model, as the size of M and E precursors determine the evolution pathways of MSCs or QDs, the understanding of which is of great fundamental significance toward mechanism-enabled design and predictive synthesis of functional nanomaterials.
Bootharaju, M. S.; Baek, W.; Lee, S.; Chang, H.; Kim, J.; Hyeon, T. Magic-sized stoichiometric II–VI nanoclusters. Small 2021, 17, 2002067.
Pan, D. C.; Ji, X. L.; An, L. J.; Lu, Y. F. Observation of nucleation and growth of CdS nanocrystals in a two-phase system. Chem. Mater. 2008, 20, 3560–3566.
Ouyang, J. Y.; Kuijper, J.; Brot, S.; Kingston, D.; Wu, X. H.; Leek, D. M.; Hu, M. Z.; Ripmeester, J. A.; Yu, K. Photoluminescent colloidal CdS nanocrystals with high quality via noninjection one-pot synthesis in 1-octadecene. J. Phys. Chem. C 2009, 113, 7579–7593.
Peng, Z. A.; Peng, X. G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.
Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J. et al. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 2007, 19, 548–552.
Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 2004, 3, 99–102.
Wang, R. B.; Ouyang, J. Y.; Nikolaus, S.; Brestaz, L.; Zaman, B.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Yu, K. Single-sized colloidal CdTe nanocrystals with strong bandgap photoluminescence. Chem. Commun. 2009, 962–964.
Wang, Y. Y.; Zhou, Y.; Zhang, Y.; Buhro, W. E. Magic-size II–VI nanoclusters as synthons for flat colloidal nanocrystals. Inorg. Chem. 2015, 54, 1165–1177.
Dukes III, A. D.; McBride, J. R.; Rosenthal, S. J. Synthesis of magic-sized CdSe and CdTe nanocrystals with diisooctylphosphinic acid. Chem. Mater. 2010, 22, 6402–6408.
Hsieh, T. E.; Yang, T. W.; Hsieh, C. Y.; Huang, S. J.; Yeh, Y. Q.; Chen, C. H.; Li, E. Y.; Liu, Y. H. Unraveling the structure of magic-size (CdSe)13 cluster pairs. Chem. Mater. 2018, 30, 5468–5477.
Nevers, D. R.; Williamson, C. B.; Savitzky, B. H.; Hadar, I.; Banin, U.; Kourkoutis, L. F.; Hanrath, T.; Robinson, R. D. Mesophase formation stabilizes high-purity magic-sized clusters. J. Am. Chem. Soc. 2018, 140, 3652–3662.
Mule, A. S.; Mazzotti, S.; Rossinelli, A. A.; Aellen, M.; Prins, P. T.; van der Bok, J. C.; Solari, S. F.; Glauser, Y. M.; Kumar, P. V.; Riedinger, A. et al. Unraveling the growth mechanism of magic-sized semiconductor nanocrystals. J. Am. Chem. Soc. 2021, 143, 2037–2048.
Wang, P.; Yang, Q. Q.; Xu, C.; Wang, B.; Wang, H.; Zhang, J. D.; Jin, Y. D. Magic-sized CdSe nanoclusters for efficient visible-light-driven hydrogen evolution. Nano Res. 2022, 15, 3106–3113.
Dagtepe, P.; Chikan, V.; Jasinski, J.; Leppert, V. J. Quantized growth of CdTe quantum dots; observation of magic-sized CdTe quantum dots. J. Phys. Chem. C 2007, 111, 14977–14983.
Yu, K. CdSe magic-sized nuclei, magic-sized nanoclusters and regular nanocrystals: Monomer effects on nucleation and growth. Adv. Mater. 2012, 24, 1123–1132.
Friedfeld, M. R.; Johnson, D. A.; Cossairt, B. M. Conversion of InP clusters to quantum dots. Inorg. Chem. 2019, 58, 803–810.
Gary, D. C.; Terban, M. W.; Billinge, S. J. L.; Cossairt, B. M. Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 2015, 27, 1432–1441.
Jiang, Z. J.; Kelley, D. F. Role of magic-sized clusters in the synthesis of CdSe nanorods. ACS Nano 2010, 4, 1561–1572.
Liu, X. M.; Jiang, Y.; Guo, W. M.; Lan, X. Z.; Fu, F. M.; Huang, W. Y.; Li, L. J. One-pot synthesis of CdSe magic-sized nanocrystals using selenium dioxide as the selenium source compound. Chem. Eng. J. 2013, 230, 466–474.
Newton, J. C.; Ramasamy, K.; Mandal, M.; Joshi, G. K.; Kumbhar, A.; Sardar, R. Low-temperature synthesis of magic-sized CdSe nanoclusters: Influence of ligands on nanocluster growth and photophysical properties. J. Phys. Chem. C 2012, 116, 4380–4389.
Ithurria, S.; Bousquet, G.; Dubertret, B. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 2011, 133, 3070–3077.
Singh, S.; Tomar, R.; Brinck, S. T.; Roo, J.; Geiregat, P.; Martins, J. C.; Infante, I.; Hens, Z. Colloidal CdSe nanoplatelets, a model for surface chemistry/optoelectronic property relations in semiconductor nanocrystals. J. Am. Chem. Soc. 2018, 140, 13292–13300.
Chen, M.; Luan, C. R.; Zhang, M.; Rowell, N.; Willis, M.; Zhang, C. C.; Wang, S. L.; Zhu, X. H.; Fan, H. S.; Huang, W. et al. Evolution of CdTe magic-size clusters with single absorption doublet assisted by adding small molecules during prenucleation. J. Phys. Chem. Lett. 2020, 11, 2230–2240.
Wang, Z.; Wang, T. H.; Zhang, C. C.; Zhang, M.; Chen, X. Q.; Fan, H. S.; Huang, W.; Luan, C. R.; Yu, K. Evolution of two types of ZnTe magic-size clusters displaying sharp doublets in optical absorption. J. Phys. Chem. Lett. 2021, 12, 4762–4768.
He, Z. T.; Wang, D. Q.; Yu, Q. Y.; Zhang, M.; Wang, S. L.; Huang, W.; Luan, C. R.; Yu, K. Evolution of photoluminescent CdS magic-size clusters assisted by adding small molecules with carboxylic group. ACS Omega 2021, 6, 14458–14466.
Liu, Y. Y.; Willis, M.; Rowell, N.; Luo, W. Z.; Fan, H. S.; Han, S.; Yu, K. Effect of small molecule additives in the prenucleation stage of semiconductor CdSe quantum dots. J. Phys. Chem. Lett. 2018, 9, 6356–6363.
Abe, S.; Capek, R. K.; De Geyter, B.; Hens, Z. Reaction chemistry/nanocrystal property relations in the hot injection synthesis, the role of the solute solubility. ACS Nano 2013, 7, 943–949.
Dai, Q. Q.; Kan, S. H.; Li, D. M.; Jiang, S.; Chen, H. Y.; Zhang, M. Z.; Gao, S. Y.; Nie, Y. G.; Lu, H. L.; Qu, Q. L. et al. Effect of ligands and growth temperature on the growth kinetics and crystal size of colloidal CdSe nanocrystals. Mater. Lett. 2006, 60, 2925–2928.
Zhang, Q.; Zhang, A. Y.; Yang, P.; Shen, J. X. Synthesis of CdSe quantum dots using various long-chain fatty acids and their phase transfer. J. Nanosci. Nanotechnol. 2013, 13, 4235–4241.
Choi, H.; Ko, J. H.; Kim, Y. H.; Jeong, S. Steric-hindrance-driven shape transition in PbS quantum dots: Understanding size-dependent stability. J. Am. Chem. Soc. 2013, 135, 5278–5281.
Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002, 41, 2368–2371.
Green, P. B.; Wang, Z. B.; Sohn, P.; Imperiale, C. J.; Voznyy, O.; Wilson, M. W. B. Glycol ether additives control the size of PbS nanocrystals at reaction completion. J. Mater. Chem. C 2020, 8, 12068–12074.
Zhang, J.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H. S.; Zhang, C. C.; Hu, C. W.; Zhang, M.; Yu, K. Individual pathways in the formation of magic-size clusters and conventional quantum dots. J. Phys. Chem. Lett. 2018, 9, 3660–3666.
Palencia, C.; Yu, K.; Boldt, K. The future of colloidal semiconductor magic-size clusters. ACS Nano 2020, 14, 1227–1235.
Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.
Zhu, T. T.; Zhang, B. W.; Zhang, J.; Lu, J.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K. Two-step nucleation of CdS magic-size nanocluster MSC-311. Chem. Mater. 2017, 29, 5727–5735.
Zhu, D. K.; Hui, J.; Rowell, N.; Liu, Y. Y.; Chen, Q. Y.; Steegemans, T.; Fan, H. S.; Zhang, M.; Yu, K. Interpreting the ultraviolet absorption in the spectrum of 415 nm bandgap CdSe magic-size clusters. J. Phys. Chem. Lett. 2018, 9, 2818–2824.
Luan, C. R.; Gökçinar, Ö. Ö.; Rowell, N.; Kreouzis, T.; Han, S.; Zhang, M.; Fan, H. S.; Yu, K. Evolution of two types of CdTe magic-size clusters from a single induction period sample. J. Phys. Chem. Lett. 2018, 9, 5288–5295.
He, L.; Luan, C. R.; Rowell, N.; Zhang, M.; Chen, X. Q.; Yu, K. Transformations among colloidal semiconductor magic-size clusters. Acc. Chem. Res. 2021, 54, 776–786.
Zhao, M.; Chen, Q. Y.; Zhu, Y. C.; Liu Y. H.; Zhang, C. C.; Jiang, G.; Zhang, M.; Yu, K. Precursor compound enabled formation of aqueous-phase CdSe magic-size clusters at room temperature. Nano Res. 2022, 15, 2634–2642.
LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.
García-Rodríguez, R.; Hendricks, M. P.; Cossairt, B. M.; Liu, H. T.; Owen, J. S. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem. Mater. 2013, 25, 1233–1249.
Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.
Li, L. J.; Zhang, J.; Zhang, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Lu, J.; Fan, H. S.; Huang, W.; Chen, X. Q. et al. Fragmentation of magic-size cluster precursor compounds into ultrasmall CdS quantum dots with enhanced particle yield at low temperatures. Angew. Chem., Int. Ed. 2020, 59, 12013–12021.
Service, R. F. How far can we push chemical self-assembly. Science 2005, 309, 95.
Ithurria, S.; Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.
Cossairt, B. M.; Owen, J. S. CdSe clusters: At the interface of small molecules and quantum dots. Chem. Mater. 2011, 23, 3114–3119.
Riedinger, A.; Ott, F. D.; Mule, A.; Mazzotti, S.; Knüsel, P. N.; Kress, S. J. P.; Prins, F.; Erwin, S. C.; Norris, D. J. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 2017, 16, 743–748.
Pun, A. B.; Mazzotti, S.; Mule, A. S.; Norris, D. J. Understanding discrete growth in semiconductor nanocrystals: Nanoplatelets and magic-sized clusters. Acc. Chem. Res. 2021, 54, 1545–1554.
Zhu, J. M.; Cao, Z. P.; Zhu, Y. C.; Rowell, N.; Li, Y.; Wang, S. L.; Zhang, C. C.; Jiang, G.; Zhang, M.; Zeng, J. R. et al. Transformation pathway from CdSe magic-size clusters with absorption doublets at 373/393 nm to clusters at 434/460 nm. Angew. Chem., Int. Ed. 2021, 60, 20358–20365.
Prins, P. T.; Montanarella, F.; Dümbgen, K.; Justo, Y.; van der Bok, J. C.; Hinterding, S. O. M.; Geuchies, J. J.; Maes, J.; De Nolf, K.; Deelen, S. et al. Extended nucleation and superfocusing in colloidal semiconductor nanocrystal synthesis. Nano Lett. 2021, 21, 2487–2496.
Liu, Y. Y.; Rowell, N.; Willis, M.; Zhang, M.; Wang, S. L.; Fan, H. S.; Huang, W.; Chen, X. Q.; Yu, K. Photoluminescent colloidal nanohelices self-assembled from CdSe magic-size clusters via nanoplatelets. J. Phys. Chem. Lett. 2019, 10, 2794–2801.
Yu, K.; Ouyang, J. Y.; Zaman, M. B.; Johnston, D.; Yan, F. J.; Li, G.; Ratcliffe, C. I.; Leek, D. M.; Wu, X. H.; Stupak, J. et al. Single-sized CdSe nanocrystals with bandgap photoemission via a noninjection one-pot approach. J. Phys. Chem. C 2009, 113, 3390–3401.
Calvin, J. J.; Brewer, A. S.; Alivisatos, A. P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat. Synth. 2022, 1, 127–137.
Ouyang, J. Y.; Zaman, M. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 2008, 112, 13805–13811.
Ghosh, S.; Ray, A.; Pramanik, N. Self-assembly of surfactants: An overview on general aspects of amphiphiles. Biophys. Chem. 2020, 265, 106429.
Liu, S. P.; Yu, Q. Y.; Zhang, C. C.; Zhang, M.; Rowell, N.; Fan, H. S.; Huang, W.; Yu, K.; Liang, B. Transformation of ZnS precursor compounds to magic-size clusters exhibiting optical absorption peaking at 269 nm. J. Phys. Chem. Lett. 2020, 11, 75–82.
Van Embden, J.; Mulvaney, P. Nucleation and growth of CdSe nanocrystals in a binary ligand system. Langmuir 2005, 21, 10226–10233.