AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polydopamine-assisted in-situ formation of dense MOF layer on polyolefin separator for synergistic enhancement of lithium-sulfur battery

Xiuxiu Wu1,§Cheng Zhou1,§Chenxu Dong2Chunli Shen1Binbin Shuai1Cheng Li1Yan Li1Qinyou An1( )Xu Xu2( )Liqiang Mai1
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

§ Xiuxiu Wu and Cheng Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

Ultrathin ZIF-8 modified layer was in situ grown on the surface of the separator by a new method. Continuous adsorption of Li2Sx was realized by the interior of the zeolitic imidazolate framework-8 (ZIF-8) gradient modified separator.

Abstract

The separator is of great significance to alleviate the shuttle effect and dendrite growth of lithium-sulfur batteries. However, most of the current commercial separators cannot meet these requirements well. In this work, a dense metal-organic-framework (MOF) modification layer is in-situ prepared by the assistant of polydopamine on the polypropylene separators. Due to the unique structure and synergistic effect of polydopamine (PDA) and zeolitic imidazolate framework-8 (ZIF-8), the functional separator can not only trap the polysulfides effectively but also promote the transport of lithium ions. As a result, the battery assembled with the functional separator exhibits excellent cycle stability. The capacity remains 711 mAh·g−1 after 500 cycles at 2 C, and the capacity decay rate is as low as 0.013% per cycle. The symmetrical battery is cycled for 1,000 h at 2 mA·cm−2 (2 mAh·cm−2) with the plating/stripping overpotential of 20 mV. At the same time, the modification separator shows a higher lithium ion transference number (0.88), better thermal stability and electrolyte wettability than the unmodified separator.

Electronic Supplementary Material

Download File(s)
12274_2022_4423_MOESM1_ESM.pdf (813.8 KB)

References

1

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

2

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui. Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

3

Zhao, M.; Peng, Y. Q.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q. Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries. J. Energy Chem. 2021, 56, 203–208.

4

Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

5

Zhao, M.; Li, X. Y.; Chen, X.; Li, B. Q.; Kaskel, S.; Zhang, Q.; Huang, J. Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries. eSience 2021, 1, 44–52.

6

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

7

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

8

Tao, T.; Lu, S. G.; Fan, Y.; Lei, W. W.; Huang, S. M.; Chen, Y. Anode improvement in rechargeable lithium-sulfur batteries. Adv. Mater. 2017, 29, 1700542.

9

Huang, J. Q.; Zhang, Q.; Peng, H. J.; Liu, X. Y.; Qian, W. Z.; Wei, F. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy Environ. Sci. 2014, 7, 347–353.

10

Ryou, M. H.; Lee, Y. M.; Park, J. K.; Choi, J. W. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv. Mater. 2011, 23, 3066–3070.

11

Ryou, M. H.; Lee, D. J.; Lee, J. N.; Lee, Y. M.; Park, J. K.; Choi, J. W. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2012, 2, 645–650.

12

Kim, J. H.; Lee, D.; Lee, Y. H.; Chen, W. S.; Lee, S. Y. Nanocellulose for energy storage systems: Beyond the limits of synthetic materials. Adv. Mater. 2019, 31, 1804826.

13

Yu, X. W.; Wu, H.; Koo, J. H.; Manthiram, A. Tailoring the pore size of a polypropylene separator with a polymer having intrinsic nanoporosity for suppressing the polysulfide shuttle in lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 1902872.

14

Wang, X. F.; Wang, Z. X.; Chen, L. Q. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium-sulfur battery. J. Power Sources 2013, 242, 65–69.

15

Pang, Y.; Wei, J. S.; Wang, Y. G.; Xia, Y. Y. Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702288.

16

Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

17

Tan, S. S.; Dai, Y. H.; Jiang, Y. L.; Wei, Q. L.; Zhang, G. B.; Xiong, F. Y.; Zhu, X. Q.; Hu, Z. Y.; Zhou, L.; Jin, Y. C. et al. Revealing the origin of highly efficient polysulfide anchoring and transformation on anion-substituted vanadium nitride host. Adv. Funct. Mater. 2021, 31, 2008034.

18

He, J. R.; Chen, Y. F.; Manthiram, A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy Environ. Sci. 2018, 11, 2560–2568.

19

Xu, J.; An, S. H.; Song, X. Y.; Cao, Y. J.; Wang, N.; Qiu, X.; Zhang, Y.; Chen, J. W.; Duan, X. L.; Huang, J. H. et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 2021, 33, 2105178.

20

Meng, J. S.; Liu, X.; Niu, C. J.; Pang, Q.; Li, J. T.; Liu, F.; Liu, Z. A.; Mai, L. Advances in metal-organic framework coatings: Versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142–3186.

21

Zhou, C.; Li, Z. H.; Xu, X.; Mai, L. Q. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 2021, 8, nwab055.

22

Jeong, Y. C.; Kim, J. H.; Nam, S.; Park, C. R.; Yang, S. J. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv. Funct. Mater. 2018, 28, 1707411.

23

Lin, C.; Qu, L. B.; Li, J. T.; Cai, Z. Y.; Liu, H. Y.; He, P.; Xu, X.; Mai, L. Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Res. 2019, 12, 205–210.

24

Mathew, D. E.; Gopi, S.; Kathiresan, M.; Rani, G. J.; Thomas, S.; Stephan, A. M. A porous organic polymer-coated permselective separator mitigating self-discharge of lithium-sulfur batteries. Mater. Adv. 2020, 1, 648–657.

25

He, M. L.; Wang, L.; Lv, Y. T.; Wang, X. D.; Zhu, J. N.; Zhang, Y.; Liu, T. T. Novel polydopamine/metal organic framework thin film nanocomposite forward osmosis membrane for salt rejection and heavy metal removal. Chem. Eng. J. 2020, 389, 124452.

26

Ma, C. C.; Li, Y. J.; Nian, P.; Liu, H. Q.; Qiu, J. S.; Zhang, X. F. Fabrication of oriented metal-organic framework nanosheet membrane coated stainless steel meshes for highly efficient oil/water separation. Sep. Purif. Technol. 2019, 229, 115835.

27

Zhao, Y. H.; Dong, H. X.; He, X. Y.; Yu, J.; Chen, R. R.; Liu, Q.; Liu, J. Y.; Zhang, H. S.; Li, R. M.; Wang, J. Design of 2D mesoporous Zn/Co-based metal-organic frameworks as a flexible electrode for energy storage and conversion. J. Power Sources 2019, 438, 227057.

28

Pan, T. Y.; Li, Z. H.; He, Q.; Xu, X.; He, L.; Meng, J. S.; Zhou, C.; Zhao, Y.; Mai, L. Uniform zeolitic imidazolate framework coating via in situ recoordination for efficient polysulfide trapping. Energy Storage Mater. 2019, 23, 55–61.

29

Xia, Y. Y.; Xu, N.; Du, L. L.; Cheng, Y.; Lei, S. L.; Li, S. J.; Liao, X. B.; Shi, W. C.; Xu, L.; Mai, L. Rational design of ion transport paths at the interface of metal-organic framework modified solid electrolyte. ACS Appl. Mater. Interfaces 2020, 12, 22930–22938.

30

Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries. Small 2016, 12, 381–389.

31

Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S. F.; Li, F.; Cheng, H. M. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 2015, 27, 641–647.

32

Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 2016, 94, 16094.

33

Wang, J.; Wang, K.; Yang, Z.; Li, X. D.; Gao, J.; He, J. J.; Wang, N.; Wang, H. L.; Zhang, Y. L.; Huang, C. S. Effective stabilization of long-cycle lithium-sulfur batteries utilizing in situ prepared graphdiyne-modulated separators. ACS Sustainable Chem. Eng. 2020, 8, 1741–1750.

34

Li, W. B.; Su, P. C.; Li, Z. J.; Xu, Z. H.; Wang, F.; Ou, H. S.; Zhang, J. H.; Zhang, G. L.; Zeng, E. Ultrathin metal-organic framework membrane production by gel-vapour deposition. Nat. Commun. 2017, 8, 406.

35

Zhou, C.; He, Q.; Li, Z. H.; Meng, J. S.; Hong, X. F.; Li, Y.; Zhao, Y.; Xu, X.; Mai, L. Q. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem. Eng. J. 2020, 395, 124979.

36

Delparastan, P.; Malollari, K. G.; Lee, H.; Messersmith, P. B. Direct evidence for the polymeric nature of polydopamine. Angew. Chem., Int Ed. 2019, 58, 1077–1082.

37

Lee, H. A.; Park, E.; Lee, H. Polydopamine and its derivative surface chemistry in material science: A focused review for studies at KAIST. Adv. Mater. 2020, 32, 1907505.

38

D’Ischia, M.; Napolitano, A.; Ball, V.; Chen, C. T.; Buehler, M. J. Polydopamine and eumelanin: From structure-property relationships to a unified tailoring strategy. Acc. Chem. Res. 2014, 47, 3541–3550.

39

Li, Y.; Li, Z. H.; Zhou, C.; Liao, X. B.; Liu, X. W.; Hong, X. F.; Xu, X.; Zhao, Y.; Mai, L. Gradient sulfur fixing separator with catalytic ability for stable lithium sulfur battery. Chem. Eng. J. 2021, 422, 130107.

40

Liu, T. Y.; Kim, K. C.; Lee, B.; Chen, Z. M.; Noda, S.; Jang, S. S.; Lee, S. W. Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. Energy Environ. Sci. 2017, 10, 205–215.

41

Wu, H. Q.; Ang, J. M.; Kong, J. H.; Zhao, C. Y.; Du, Y. H.; Lu, X. H. One-pot synthesis of polydopamine-Zn complex antifouling coatings on membranes for ultrafiltration under harsh conditions. RSC Adv. 2016, 6, 103390.

42

Wang, X. P.; Hou, J. W.; Chen, F. S.; Meng, X. M. In-situ growth of metal-organic framework film on a polydopamine-modified flexible substrate for antibacterial and forward osmosis membranes. Sep. Purif. Technol. 2020, 236, 116239.

43

Sun, T.; Li, Z. J.; Wang, H. G.; Bao, D.; Meng, F. L.; Zhang, X. B. A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 10662–10666.

Nano Research
Pages 8048-8055
Cite this article:
Wu X, Zhou C, Dong C, et al. Polydopamine-assisted in-situ formation of dense MOF layer on polyolefin separator for synergistic enhancement of lithium-sulfur battery. Nano Research, 2022, 15(9): 8048-8055. https://doi.org/10.1007/s12274-022-4423-2
Topics:

1207

Views

28

Crossref

29

Web of Science

26

Scopus

0

CSCD

Altmetrics

Received: 16 February 2022
Revised: 29 March 2022
Accepted: 13 April 2022
Published: 19 May 2022
© Tsinghua University Press 2022
Return