Graphical Abstract

The separator is of great significance to alleviate the shuttle effect and dendrite growth of lithium-sulfur batteries. However, most of the current commercial separators cannot meet these requirements well. In this work, a dense metal-organic-framework (MOF) modification layer is in-situ prepared by the assistant of polydopamine on the polypropylene separators. Due to the unique structure and synergistic effect of polydopamine (PDA) and zeolitic imidazolate framework-8 (ZIF-8), the functional separator can not only trap the polysulfides effectively but also promote the transport of lithium ions. As a result, the battery assembled with the functional separator exhibits excellent cycle stability. The capacity remains 711 mAh·g−1 after 500 cycles at 2 C, and the capacity decay rate is as low as 0.013% per cycle. The symmetrical battery is cycled for 1,000 h at 2 mA·cm−2 (2 mAh·cm−2) with the plating/stripping overpotential of 20 mV. At the same time, the modification separator shows a higher lithium ion transference number (0.88), better thermal stability and electrolyte wettability than the unmodified separator.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui. Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.
Zhao, M.; Peng, Y. Q.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q. Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries. J. Energy Chem. 2021, 56, 203–208.
Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.
Zhao, M.; Li, X. Y.; Chen, X.; Li, B. Q.; Kaskel, S.; Zhang, Q.; Huang, J. Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries. eSience 2021, 1, 44–52.
Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.
Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.
Tao, T.; Lu, S. G.; Fan, Y.; Lei, W. W.; Huang, S. M.; Chen, Y. Anode improvement in rechargeable lithium-sulfur batteries. Adv. Mater. 2017, 29, 1700542.
Huang, J. Q.; Zhang, Q.; Peng, H. J.; Liu, X. Y.; Qian, W. Z.; Wei, F. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy Environ. Sci. 2014, 7, 347–353.
Ryou, M. H.; Lee, Y. M.; Park, J. K.; Choi, J. W. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv. Mater. 2011, 23, 3066–3070.
Ryou, M. H.; Lee, D. J.; Lee, J. N.; Lee, Y. M.; Park, J. K.; Choi, J. W. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2012, 2, 645–650.
Kim, J. H.; Lee, D.; Lee, Y. H.; Chen, W. S.; Lee, S. Y. Nanocellulose for energy storage systems: Beyond the limits of synthetic materials. Adv. Mater. 2019, 31, 1804826.
Yu, X. W.; Wu, H.; Koo, J. H.; Manthiram, A. Tailoring the pore size of a polypropylene separator with a polymer having intrinsic nanoporosity for suppressing the polysulfide shuttle in lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 1902872.
Wang, X. F.; Wang, Z. X.; Chen, L. Q. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium-sulfur battery. J. Power Sources 2013, 242, 65–69.
Pang, Y.; Wei, J. S.; Wang, Y. G.; Xia, Y. Y. Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702288.
Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.
Tan, S. S.; Dai, Y. H.; Jiang, Y. L.; Wei, Q. L.; Zhang, G. B.; Xiong, F. Y.; Zhu, X. Q.; Hu, Z. Y.; Zhou, L.; Jin, Y. C. et al. Revealing the origin of highly efficient polysulfide anchoring and transformation on anion-substituted vanadium nitride host. Adv. Funct. Mater. 2021, 31, 2008034.
He, J. R.; Chen, Y. F.; Manthiram, A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy Environ. Sci. 2018, 11, 2560–2568.
Xu, J.; An, S. H.; Song, X. Y.; Cao, Y. J.; Wang, N.; Qiu, X.; Zhang, Y.; Chen, J. W.; Duan, X. L.; Huang, J. H. et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 2021, 33, 2105178.
Meng, J. S.; Liu, X.; Niu, C. J.; Pang, Q.; Li, J. T.; Liu, F.; Liu, Z. A.; Mai, L. Advances in metal-organic framework coatings: Versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142–3186.
Zhou, C.; Li, Z. H.; Xu, X.; Mai, L. Q. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 2021, 8, nwab055.
Jeong, Y. C.; Kim, J. H.; Nam, S.; Park, C. R.; Yang, S. J. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv. Funct. Mater. 2018, 28, 1707411.
Lin, C.; Qu, L. B.; Li, J. T.; Cai, Z. Y.; Liu, H. Y.; He, P.; Xu, X.; Mai, L. Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Res. 2019, 12, 205–210.
Mathew, D. E.; Gopi, S.; Kathiresan, M.; Rani, G. J.; Thomas, S.; Stephan, A. M. A porous organic polymer-coated permselective separator mitigating self-discharge of lithium-sulfur batteries. Mater. Adv. 2020, 1, 648–657.
He, M. L.; Wang, L.; Lv, Y. T.; Wang, X. D.; Zhu, J. N.; Zhang, Y.; Liu, T. T. Novel polydopamine/metal organic framework thin film nanocomposite forward osmosis membrane for salt rejection and heavy metal removal. Chem. Eng. J. 2020, 389, 124452.
Ma, C. C.; Li, Y. J.; Nian, P.; Liu, H. Q.; Qiu, J. S.; Zhang, X. F. Fabrication of oriented metal-organic framework nanosheet membrane coated stainless steel meshes for highly efficient oil/water separation. Sep. Purif. Technol. 2019, 229, 115835.
Zhao, Y. H.; Dong, H. X.; He, X. Y.; Yu, J.; Chen, R. R.; Liu, Q.; Liu, J. Y.; Zhang, H. S.; Li, R. M.; Wang, J. Design of 2D mesoporous Zn/Co-based metal-organic frameworks as a flexible electrode for energy storage and conversion. J. Power Sources 2019, 438, 227057.
Pan, T. Y.; Li, Z. H.; He, Q.; Xu, X.; He, L.; Meng, J. S.; Zhou, C.; Zhao, Y.; Mai, L. Uniform zeolitic imidazolate framework coating via in situ recoordination for efficient polysulfide trapping. Energy Storage Mater. 2019, 23, 55–61.
Xia, Y. Y.; Xu, N.; Du, L. L.; Cheng, Y.; Lei, S. L.; Li, S. J.; Liao, X. B.; Shi, W. C.; Xu, L.; Mai, L. Rational design of ion transport paths at the interface of metal-organic framework modified solid electrolyte. ACS Appl. Mater. Interfaces 2020, 12, 22930–22938.
Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries. Small 2016, 12, 381–389.
Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S. F.; Li, F.; Cheng, H. M. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 2015, 27, 641–647.
Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 2016, 94, 16094.
Wang, J.; Wang, K.; Yang, Z.; Li, X. D.; Gao, J.; He, J. J.; Wang, N.; Wang, H. L.; Zhang, Y. L.; Huang, C. S. Effective stabilization of long-cycle lithium-sulfur batteries utilizing in situ prepared graphdiyne-modulated separators. ACS Sustainable Chem. Eng. 2020, 8, 1741–1750.
Li, W. B.; Su, P. C.; Li, Z. J.; Xu, Z. H.; Wang, F.; Ou, H. S.; Zhang, J. H.; Zhang, G. L.; Zeng, E. Ultrathin metal-organic framework membrane production by gel-vapour deposition. Nat. Commun. 2017, 8, 406.
Zhou, C.; He, Q.; Li, Z. H.; Meng, J. S.; Hong, X. F.; Li, Y.; Zhao, Y.; Xu, X.; Mai, L. Q. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem. Eng. J. 2020, 395, 124979.
Delparastan, P.; Malollari, K. G.; Lee, H.; Messersmith, P. B. Direct evidence for the polymeric nature of polydopamine. Angew. Chem., Int Ed. 2019, 58, 1077–1082.
Lee, H. A.; Park, E.; Lee, H. Polydopamine and its derivative surface chemistry in material science: A focused review for studies at KAIST. Adv. Mater. 2020, 32, 1907505.
D’Ischia, M.; Napolitano, A.; Ball, V.; Chen, C. T.; Buehler, M. J. Polydopamine and eumelanin: From structure-property relationships to a unified tailoring strategy. Acc. Chem. Res. 2014, 47, 3541–3550.
Li, Y.; Li, Z. H.; Zhou, C.; Liao, X. B.; Liu, X. W.; Hong, X. F.; Xu, X.; Zhao, Y.; Mai, L. Gradient sulfur fixing separator with catalytic ability for stable lithium sulfur battery. Chem. Eng. J. 2021, 422, 130107.
Liu, T. Y.; Kim, K. C.; Lee, B.; Chen, Z. M.; Noda, S.; Jang, S. S.; Lee, S. W. Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. Energy Environ. Sci. 2017, 10, 205–215.
Wu, H. Q.; Ang, J. M.; Kong, J. H.; Zhao, C. Y.; Du, Y. H.; Lu, X. H. One-pot synthesis of polydopamine-Zn complex antifouling coatings on membranes for ultrafiltration under harsh conditions. RSC Adv. 2016, 6, 103390.
Wang, X. P.; Hou, J. W.; Chen, F. S.; Meng, X. M. In-situ growth of metal-organic framework film on a polydopamine-modified flexible substrate for antibacterial and forward osmosis membranes. Sep. Purif. Technol. 2020, 236, 116239.
Sun, T.; Li, Z. J.; Wang, H. G.; Bao, D.; Meng, F. L.; Zhang, X. B. A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 10662–10666.