AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Function toggle of tumor microenvironment responsive nanoagent for highly efficient free radical stress enhanced chemodynamic therapy

Xueting Yang1,2Shuaitian Guo1,2Li Wang2,3Shanyue Guan2( )Shuyun Zhou2Jun Lu1,4( )
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100190, China
Beijing Advanced Innovation Center for Soft Mater Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

A free radical generator for enhanced chemodynamic therapy (CDT) has been fabricated and its mechanism of this enhanced-CDT has been elaborated.

Abstract

In contrast to reactive oxygen species (ROS), the generation of oxygen-irrelevant free radicals is oxygen- and H2O2-independent in cell, which can offer novel opportunities to maximum the chemodynamic therapy (CDT) efficacy. Herein, an H2O2-independent “functional reversion” strategy based on tumor microenvironment (TME)-toggled C-free radical generation for CDT is developed by confining astaxanthin (ATX) on the NiFe-layered double hydroxide (LDH) nanosheets (denoted as ATX/LDH). The unique ATX/LDH can demonstrate outstanding TME-responsive C-free radical generation performance by proton coupled electron transfer (PCET), owing to the specific ATX activation by unsaturated Fe sites on the LDH nanosheets formed under TME. Significantly, the Brönsted base sites of LDH hydroxide layers can promote the generation of neutral ATX C-free radicals by capturing the protons generated in the ATX activation process. Conversely, ATX/LDH maintain antioxidant performance to prevent normal tissue cancerization due to the synergy of LDH nanosheets and antioxidative ATX. In addition, C-free radical can compromise the antioxidant defense in cells to the maximum extent, compared with ROS. The free radicals burst under TME can significantly elevate free radical stress and induce cancer cell apoptosis. This strategy can realize TME-toggled C free radical generation and perform free radical stress enhanced CDT.

Electronic Supplementary Material

Download File(s)
12274_2022_4427_MOESM1_ESM.pdf (2.1 MB)

References

1

Studer, A.; Curran, D. P. Catalysis of radical reactions: A radical chemistry perspective. Angew. Chem., Int. Ed. 2016, 55, 58–102.

2

Lushchak, V. I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem.—Biol. Interact. 2014, 224, 164–175.

3

Wang, X. Q.; Wang, W. J.; Peng, M. Y.; Zhang, X. Z. Free radicals for cancer theranostics. Biomaterials 2021, 266, 120474.

4

Studer, A.; Curran, D. P. The electron is a catalyst. Nat. Chem. 2014, 6, 765–773.

5

Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. Radicals: Reactive intermediates with translational potential. J. Am. Chem. Soc. 2016, 138, 12692–12714.

6

Flannagan, R. S.; Cosío, G.; Grinstein, S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 2009, 7, 355–366.

7

Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194, 7–15.

8

Fruehauf, J. P.; Meyskens, F. L. Reactive oxygen species:A breath of life or death? Clin. Cancer Res. 2007, 13, 789–794.

9

Fang, C.; Deng, Z.; Cao, G. D.; Chu, Q.; Wu, Y. L.; Li, X.; Peng, X. S.; Han, G. R. Co-ferrocene MOF/glucose oxidase as cascade nanozyme for effective tumor therapy. Adv. Funct. Mater. 2020, 30, 1910085.

10

Zhou, T. J.; Xu, Y.; Xing, L.; Wang, Y.; Jiang, H. L. A harmless-harmful switchable and uninterrupted laccase-instructed killer for activatable chemodynamic therapy. Adv. Mater. 2021, 33, 2100114.

11

Chen, Y. X.; Xiang, H. J.; Zhuang, S. W.; Shen, Y. J.; Chen, Y.; Zhang, J. Oxygen-independent photocleavage of radical nanogenerator for near-IR-gated and H2O-mediated free-radical nanotherapy. Adv. Mater. 2021, 33, 2100129.

12

Yang, N. L.; Gong, F.; Zhou, Y. K.; Hao, Y.; Dong, Z. L.; Lei, H. L.; Zhong, L. P.; Yang, X. Y.; Wang, X. W.; Zhao, Y. X. et al. A general in-situ reduction method to prepare core–shell liquid–metal/metal nanoparticles for photothermally enhanced catalytic cancer therapy. Biomaterials 2021, 277, 121125.

13

Wang, S.; Wang, Z. T.; Yu, G. C.; Zhou, Z. J.; Jacobson, O.; Liu, Y. J.; Ma, Y.; Zhang, F. W.; Chen, Z. Y.; Chen, X. Y. Tumor-specific drug release and reactive oxygen species generation for cancer chemo/chemodynamic combination therapy. Adv. Sci. 2019, 6, 1801986.

14

Li, S. K.; Zou, Q. L.; Li, Y. X.; Yuan, C. Q.; Xing, R. R.; Yan, X. H. Smart peptide-based supramolecular photodynamic metallo-nanodrugs designed by multicomponent coordination self-assembly. J. Am. Chem. Soc. 2018, 140, 10794–10802.

15

Wang, P. P.; Xiao, M. S.; Pei, H.; Xing, H.; Luo, S. H.; Tsung, C. K.; Li, L. Biomineralized DNA nanospheres by metal organic framework for enhanced chemodynamic therapy. Chem. Eng. J. 2021, 415, 129036.

16

Yang, P. P.; Tao, J.; Chen, F. F.; Chen, Y. Y.; He, J. Q.; Shen, K.; Zhao, P.; Li, Y. W. Multienzyme-mimic ultrafine alloyed nanoparticles in metal organic frameworks for enhanced chemodynamic therapy. Small 2021, 17, 2005865.

17

Sun, P. P.; Deng, Q. Q.; Kang, L. H.; Sun, Y. H.; Ren, J. S.; Qu, X. G. A smart nanoparticle-laden and remote-controlled self-destructive macrophage for enhanced chemo/chemodynamic synergistic therapy. ACS Nano 2020, 14, 13894–13904.

18

Lin, X. H.; Liu, S. Y.; Zhang, X.; Zhu, R.; Chen, S.; Chen, X. Y.; Song, J. B.; Yang, H. H. An ultrasound activated vesicle of janus Au-MnO nanoparticles for promoted tumor penetration and sono-chemodynamic therapy of orthotopic liver cancer. Angew. Chem., Int. Ed. 2020, 59, 1682–1688.

19

Wan, Y. P.; Lu, G. H.; Zhang, J. F.; Wang, Z. Y.; Li, X. Z.; Chen, R.; Cui, X.; Huang, Z. M.; Xiao, Y. F.; Chelora, J. et al. A biocompatible free radical nanogenerator with real-time monitoring capability for high performance sequential hypoxic tumor therapy. Adv. Funct. Mater. 2019, 29, 1903436.

20

Feng, L. L.; Gai, S. L.; Dai, Y. L.; He, F.; Sun, C. Q.; Yang, P. P.; Lv, R. C.; Niu, N.; An, G. H.; Lin, J. Controllable generation of free radicals from multifunctional heat-responsive nanoplatform for targeted cancer therapy. Chem. Mater. 2018, 30, 526–539.

21

Tang, Z. M.; Liu, Y. Y.; He, M. Y.; Bu, W. B. Chemodynamic therapy: Tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew. Chem., Int. Ed. 2019, 58, 946–956.

22

Cao, Z. B.; Zhang, L.; Liang, K.; Cheong, S.; Boyer, C.; Gooding, J. J.; Chen, Y.; Gu, Z. Biodegradable 2D Fe-Al hydroxide for nanocatalytic tumor-dynamic therapy with tumor specificity. Adv. Sci. 2018, 5, 1801155.

23

Lei, S.; Chen, J. X.; Zeng, K.; Wang, M. Z.; Ge, X. W. Visual dual chemodynamic/photothermal therapeutic nanoplatform based on superoxide dismutase plus Prussian blue. Nano Res. 2019, 12, 1071–1082.

24

Wang, L.; Zhuang, L.; He, S.; Tian, F. Z.; Yang, X. T.; Guan, S. Y.; Waterhouse, G. I. N.; Zhou, S. Y. Nanocarbon framework-supported ultrafine Mo2C@MoOx nanoclusters for photothermal-enhanced tumor-specific tandem catalysis therapy. ACS Appl. Mater. Interfaces 2021, 13, 59649–59661.

25

Xiang, S. J.; Fan, Z. X.; Ye, Z. C.; Zhu, T. B.; Shi, D.; Ye, S. F.; Hou, Z. Q.; Chen, X. L. Endogenous Fe2+-activated ROS nanoamplifier for esterase-responsive and photoacoustic imaging-monitored therapeutic improvement. Nano Res. 2022, 15, 907–918.

26

Liehr, J. G. Vitamin C reduces the incidence and severity of renal tumors induced by estradiol or diethylstilbestrol. Am. J. Clin. Nutr. 1991, 54, 1256S–1260S.

27

Rammuni, M. N.; Ariyadasa, T. U.; Nimarshana, P. H. V.; Attalage, R. A. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem. 2019, 277, 128–134.

28

Salatti-Dorado, J. A.; García-Gómez, D.; Rodriguez-Ruiz, V.; Gueguen, V.; Pavon-Djavid, G.; Rubio, S. Multifunctional green supramolecular solvents for cost-effective production of highly stable astaxanthin-rich formulations from Haematococcus pluvialis. Food Chem. 2019, 279, 294–302.

29

Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126.

30

Sy, C.; Dangles, O.; Borel, P.; Caris-Veyrat, C. Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment—Comparison with dietary reference carotenoids. Arch. Biochem. Biophys. 2015, 572, 89–100.

31

Yang, L.; Qiao, X.; Gu, J. Y.; Li, X. M.; Cao, Y. R.; Xu, J.; Xue, C. H. Influence of molecular structure of astaxanthin esters on their stability and bioavailability. Food Chem. 2021, 343, 128497.

32

Boon, C. S.; McClements, D. J.; Weiss, J.; Decker, E. A. Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 2010, 50, 515–532.

33

Gao, Y. L.; Kispert, L. D. Reaction of carotenoids and ferric chloride: Equilibria, isomerization, and products. J. Phys. Chem. B 2003, 107, 5333–5338.

34

Focsan, A. L.; Polyakov, N. E.; Kispert, L. D. Photo protection of Haematococcus pluvialis algae by astaxanthin: Unique properties of astaxanthin deduced by EPR, optical and electrochemical studies. Antioxidants 2017, 6, 80.

35

Polyakov, N. E.; Focsan, A. L.; Bowman, M. K.; Kispert, L. D. Free radical formation in novel carotenoid metal ion complexes of astaxanthin. J. Phys. Chem. B 2010, 114, 16968–16977.

36

Focsan, A. L.; Bowman, M. K.; Shamshina, J.; Krzyaniak, M. D.; Magyar, A.; Polyakov, N. E.; Kispert, L. D. EPR study of the astaxanthin n-octanoic acid monoester and diester radicals on silica-alumina. J. Phys. Chem. B 2012, 116, 13200–13210.

37

Lu, J. S.; Guo, Z. H.; Che, S. L.; Gao, F.; Gu, Z.; Xu, J. Z.; Chi, Y. J.; Xu, W. L.; Zhang, J. X.; Takuya, N. et al. Dihydroartemisinin loaded layered double hydroxide nanocomposites for tumor specific photothermal-chemodynamic therapy. J. Mater. Chem. B 2020, 8, 11082–11089.

38

Chu, Q.; Liao, L. H.; Liu, B.; Han, G. R.; Li, X. Sulfite-inserted MgAl layered double hydroxides loaded with glucose oxidase to enable SO2-mediated synergistic tumor therapy. Adv. Funct. Mater. 2021, 31, 2103262.

39

Jia, T.; Wang, Z.; Sun, Q. Q.; Dong, S. M.; Xu, J. T.; Zhang, F. M.; Feng, L. L.; He, F.; Yang, D.; Yang, P. P. et al. Intelligent Fe-Mn layered double hydroxides nanosheets anchored with upconversion nanoparticles for oxygen-elevated synergetic therapy and bioimaging. Small 2020, 16, 2001343.

40

Li, B.; Hao, G. Y.; Sun, B.; Gu, Z.; Xu, Z. P. Engineering a therapy-induced “immunogenic cancer cell death” amplifier to boost systemic tumor elimination. Adv. Funct. Mater. 2020, 30, 1909745.

41

Yu, Z. G.; Hu, P.; Xu, Y. Y.; Bao, Q. Q.; Ni, D. L.; Wei, C. Y.; Shi, J. L. Efficient gene therapy of pancreatic cancer via a peptide nucleic acid (PNA)-loaded layered double hydroxides (LDH) nanoplatform. Small 2020, 16, 1907233.

42

Wang, X. W.; Zhong, X. Y.; Li, J. X.; Liu, Z.; Cheng, L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 2021, 50, 8669–8742.

43

Lü, X. Y.; Lu, H. Q.; Zhao, L. F.; Yang, Y. M.; Lu, Z. H. Genome-wide pathways analysis of nickel ion-induced differential genes expression in fibroblasts. Biomaterials 2010, 31, 1965–1973.

44

Lü, X. Y.; Bao, X.; Huang, Y.; Qu, Y. H.; Lu, H. Q.; Lu, Z. H. Mechanisms of cytotoxicity of nickel ions based on gene expression profiles. Biomaterials 2009, 30, 141–148.

45

Wang, Y. F.; Shyu, H. W.; Chang, Y. C.; Tseng, W. C.; Huang, Y. L.; Lin, K. H.; Chou, M. C.; Liu, H. L.; Chen, C. Y. Nickel(II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway. Toxicol. Appl. Pharmacol. 2012, 259, 177–186.

46

Pan, J. J.; Chang, Q. S.; Wang, X.; Son, Y.; Zhang, Z.; Chen, G.; Luo, J.; Bi, Y. Y.; Chen, F.; Shi, X. L. Reactive oxygen species-activated Akt/ASK1/p38 signaling pathway in nickel compound-induced apoptosis in BEAS 2B cells. Chem. Res. Toxicol. 2010, 23, 568–577.

47

Weng, Y. Z. W.; Guan, S. Y.; Lu, H.; Meng, X. M.; Kaassis, A. Y.; Ren, X. X.; Qu, X. Z.; Sun, C. H.; Xie, Z.; Zhou, S. Y. Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy. Talanta 2018, 184, 50–57.

48

Yang, X. T.; Wang, L.; Guo, S. T.; Li, R.; Tian, F. Z.; Guan, S. Y.; Zhou, S. Y.; Lu, J. Self-cycling free radical generator from LDH-based nanohybrids for ferroptosis-enhanced chemodynamic therapy. Adv. Healthc. Mater. 2021, 10, 2100539.

49

Lin, Y. P.; Wang, H.; Peng, C. K.; Bu, L. M.; Chiang, C. L.; Tian, K.; Zhao, Y.; Zhao, J. Q.; Lin, Y. G.; Lee, J. M. et al. Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small 2020, 16, 2002426.

50

She, W. C.; Luo, K.; Zhang, C. Y.; Wang, G.; Geng, Y. Y.; Li, L.; He, B.; Gu, Z. W. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy. Biomaterials 2013, 34, 1613–1623.

51

Zhang, P.; Li, H. L.; Shi, J. J.; Lu, J. Assembly of neutral conjugated polymers with layered double hydroxide nanosheets by the layer-by-layer method. RSC Adv. 2016, 6, 94739–94747.

52

Carja, G.; Grosu, E. F.; Petrarean, C.; Nichita, N. Self-assemblies of plasmonic gold/layered double hydroxides with highly efficient antiviral effect against the hepatitis B virus. Nano Res. 2015, 8, 3512–3523.

53

Middleton, H.; Tempelaar, S.; Haddleton, D. M.; Dove, A. P. Organocatalytic synthesis of astaxanthin-containing poly(lactide)s. Polym. Chem. 2011, 2, 595–600.

54

Yuan, C.; Jin, Z. Y.; Xu, X. M.; Zhuang, H. N.; Shen, W. Y. Preparation and stability of the inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Food Chem. 2008, 109, 264–268.

55

Ilharco, L. M.; de Barros, R. B. Aggregation of pseudoisocyanine iodide in cellulose acetate films: Structural characterization by FTIR. Langmuir 2000, 16, 9331–9337.

56

Liu, G. Y.; Zhu, J. W.; Guo, H.; Sun, A. H.; Chen, P.; Xi, L.; Huang, W.; Song, X. J.; Dong, X. C. Mo2C-derived polyoxometalate for NIR-II photoacoustic imaging-guided chemodynamic/photothermal synergistic therapy. Angew. Chem., Int. Ed. 2019, 58, 18641–18646.

57

Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79.

Nano Research
Pages 8228-8236
Cite this article:
Yang X, Guo S, Wang L, et al. Function toggle of tumor microenvironment responsive nanoagent for highly efficient free radical stress enhanced chemodynamic therapy. Nano Research, 2022, 15(9): 8228-8236. https://doi.org/10.1007/s12274-022-4427-y
Topics:

891

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 02 March 2022
Revised: 11 April 2022
Accepted: 12 April 2022
Published: 19 May 2022
© Tsinghua University Press 2022
Return