AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Application of Auger electron spectroscopy in lithium-ion conducting oxide solid electrolytes

Yue Zhang1,2Wenbo Zhai1,2Xiangchen Hu1,2Yilan Jiang1,2Shaojie Chen1,2Yining Zhang1,2Wei Liu1,2( )Yi Yu1,2( )
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
Show Author Information

Graphical Abstract

Auger electron spectroscopy (AES) was applied to characterize the garnet-type oxide solid electrolyte and the phenomenon of electron induced precipitation of lithium metal from Li6.4La3Zr1.4Ta0.6O12 (LLZTO) was discussed.

Abstract

Garnet-type oxide solid electrolytes are the critical materials for all-solid-state lithium ion batteries. Nanoscale spectroscopic analysis on solid electrolytes plays a key role in bridging the gap between microstructure and properties. In this work, Auger electron spectroscopy (AES), which can directly detect lithium element and distinguish its valence state, was applied to characterize the garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO). Different spectroscopy parameters were evaluated and optimal acquisition conditions were provided. Electron induced precipitation of lithium metal from LLZTO was observed. By exploring the influence factors of precipitation and combining transmission electron microscopy (TEM) and focused ion beam (FIB) experiments, the underlying mechanism of the phenomenon was revealed and previous controversy was resolved. The analysis method was also extended to other types of solid electrolytes, and this work provides a reference for future in-depth research on the structure–property relationship of solid electrolytes using AES.

References

[1]

Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291.

[2]

Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

[3]

Wang, Q. S.; Ping, P.; Zhao, X. J.; Chu, G. Q.; Sun, J. H.; Chen, C. H. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224.

[4]

Balaish, M.; Gonzalez-Rosillo, J. C.; Kim, K. J.; Zhu, Y. T.; Hood, Z. D.; Rupp, J. L. M. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 2021, 6, 227–239.

[5]

Chen, J.; Wu, J. W.; Wang, X. D.; Zhou, A. A.; Yang, Z. L. Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries. Energy Storage Mater. 2021, 35, 70–87.

[6]

Chen, R. S.; Li, Q. H.; Yu, X. Q.; Chen, L. Q.; Li, H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem. Rev. 2020, 120, 6820–6877.

[7]

Lau, J.; DeBlock, R. H.; Butts, D. M.; Ashby, D. S.; Choi, C. S.; Dunn, B. S. Sulfide solid electrolytes for lithium battery applications. Adv. Energy Mater. 2018, 8, 1800933.

[8]

Fu, K. K.; Gong, Y. H.; Liu, B. Y.; Zhu, Y. Z.; Xu, S. M.; Yao, Y. G.; Luo, W.; Wang, C. W.; Lacey, S. D.; Dai, J. Q. et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 2017, 3, e1601659.

[9]

Hirayama, T.; Aizawa, Y.; Yamamoto, K.; Sato, T.; Murata, H.; Yoshida, R.; Fisher, C. A. J.; Kato, T.; Iriyama, Y. Advanced electron holography techniques for in situ observation of solid-state lithium ion conductors. Ultramicroscopy 2017, 173, 64–70.

[10]
Wolstenholme, J. Auger Electron Spectroscopy: Practical Application to Materials Analysis and Characterization of Surfaces, Interfaces, and Thin Films; Momentum Press: New York, 2015.
[11]

Thomsom, M.; Baker, M.; Christine, A.; Tyson, J.; Urch, D. S. Auger electron spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1985, 41, 1361.

[12]

Tang, C. Y.; Feng, L.; Haasch, R. T.; Dillon, S. J. Surface redox on Li[Ni1/3Mn1/3Co1/3]O2 characterized by in situ X-ray photoelectron spectroscopy and in situ auger electron spectroscopy. Electrochim. Acta 2018, 277, 197–204.

[13]

Radvanyi, E.; De Vito, E.; Porcher, W.; Danet, J.; Desbois, P.; Colin, J. F.; Si Larbi, S. J. Study of lithiation mechanisms in silicon electrodes by auger electron spectroscopy. J. Mater. Chem. A 2013, 1, 4956–4965.

[14]

Radvanyi, E.; De Vito, E.; Porcher, W.; Larbi, S. J. S. An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries. J. Anal. Atom. Spectrom. 2014, 29, 1120–1131.

[15]

Kim, S. H.; Kim, K.; Choi, H.; Im, D.; Heo, S.; Choi, H. S. In situ observation of lithium metal plating in a sulfur-based solid electrolyte for all-solid-state batteries. J. Mater. Chem. A 2019, 7, 13650–13657.

[16]

Xia, W. H.; Xu, B. Y.; Duan, H. N.; Tang, X. Y.; Guo, Y. P.; Kang, H. M.; Li, H.; Liu, H. Z. Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2. J. Am. Ceram. Soc. 2017, 100, 2832–2839.

[17]

Pantano, C. G.; Madey, T. E. Electron beam damage in Auger electron spectroscopy. Appl. Surf. Sci. 1981, 7, 115–141.

[18]
Egerton, R. F. Physical Principles of Electron Microscopy; Springer: Boston, 2005.
[19]
Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W. M.; Scott, J. H. J.; Joy, D. C. Scanning Electron Microscopy and X-ray Microanalysis; Springer: New York, 2017.
[20]

Baragiola, R. A. Principles and applications of ion-induced auger electron emission from solids. Radiat. Eff. 1982, 61, 47–72.

[21]

Van Oostrom, A. Some aspects of auger microanalysis. Surf. Sci. 1979, 89, 615–634.

[22]

Powell, B.; Woodruff, D.; Griffiths, B. A scanning Auger electron microscope for surface studies. J. Phys. E: Sci. Instrum. 1975, 8, 548.

[23]

Seah, M. P.; Cumpson, P. J. Signal-to-noise ratio assessment and measurement in spectroscopies with particular reference to auger and X-ray photoelectron spectroscopies. J. Electron. Spectrosc. Relat. Phenom. 1993, 61, 291–308.

[24]

Xie, X. W.; Xing, J. J.; Hu, D. L.; Gu, H.; Chen, C.; Guo, X. X. Lithium expulsion from the solid-state electrolyte Li6.4La3Zr1.4Ta0.6O12 by controlled electron injection in a SEM. ACS Appl. Mater. Interfaces 2018, 10, 5978–5983.

[25]

Wang, H. C.; Gao, H. W.; Chen, X. X.; Zhu, J. P.; Li, W. Q.; Gong, Z. J.; Li, Y. X.; Wang, M. S.; Yang, Y. Linking the defects to the formation and growth of Li dendrite in all-solid-state batteries. Adv. Energy Mater. 2021, 11, 2102148.

[26]

Krauskopf, T.; Dippel, R.; Hartmann, H.; Peppler, K.; Mogwitz, B.; Richter, F. H.; Zeier, W. G.; Janek, J. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes. Joule 2019, 3, 2030–2049.

[27]

Liang, C.; Zhang, X.; Xia, S. X.; Wang, Z. Y.; Wu, J. Y.; Yuan, B.; Luo, X.; Liu, W. Y.; Liu, W.; Yu, Y. Unravelling the room-temperature atomic structure and growth kinetics of lithium metal. Nat. Commun. 2020, 11, 5367.

[28]
Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science; Springer-Verlag US: New York, NY, 2009.
[29]
Schmitt, R. Scanning electron microscope. In CIRP Encyclopedia of Production Engineering; Chatti, S.; Laperrière, L.; Reinhart, G.; Tolio, T., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2019; pp 1501–1505.
[30]
Postek. M. T.; Vladár, A. E. Does your SEM really tell the truth?-How would you know? Part 4: Charging and its mitigation. In Proceedings of SPIE 9636, Scanning Microscopies 2015, Monterey, 2015, pp 963605.
[31]

Liu, X. M.; Garcia-Mendez, R.; Lupini, A. R.; Cheng, Y. Q.; Hood, Z. D.; Han, F. D.; Sharafi, A.; Idrobo, J. C.; Dudney, N. J.; Wang, C. S. et al. Local electronic structure variation resulting in Li "filament" formation within solid electrolytes. Nat. Mater. 2021, 20, 1485–1490.

[32]

Castle, J. E.; Mallinson, C. F.; Watts, J. F. Analysis of the Li KLL auger transition on freshly exposed lithium and lithium surface oxide by AES. Surf. Sci. Spectra 2013, 20, 113–127.

[33]

Ishida, N.; Fujita, D. Chemical-state imaging of Li using scanning Auger electron microscopy. J. Electron. Spectrosc. Relat. Phenom. 2013, 186, 39–43.

[34]

Mukhopadhyay, S.; Thompson, T.; Sakamoto, J.; Huq, A.; Wolfenstine, J.; Allen, J. L.; Bernstein, N.; Stewart, D. A.; Johannes, M. D. Structure and stoichiometry in supervalent doped Li7La3Zr2O12. Chem. Mater. 2015, 27, 3658–3665.

[35]

Emery, J.; Buzare, J. Y.; Bohnke, O.; Fourquet, J. L. Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes. Solid State Ion. 1997, 99, 41–51.

[36]

Li, Y. T.; Han, J. T.; Wang, C. A.; Xie, H.; Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 2012, 22, 15357–15361.

[37]

Ohuchi, F.; Clark, D. E.; Hench, L. L. Effect of crystallization on the Auger electron signal decay in an Li2O·2SiO2 glass and glass-ceramic. J. Am. Ceram. Soc. 1979, 62, 500–503.

[38]

Wood, K. N.; Steirer, K. X.; Hafner, S. E.; Ban, C. M.; Santhanagopalan, S.; Lee, S. H.; Teeter, G. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes. Nat. Commun. 2018, 9, 2490.

[39]

Egerton, R. F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399–409.

[40]

Vine, J.; Einstein, P. A. Heating effect of an electron beam impinging on a solid surface, allowing for penetration. Proc. Inst. Electr. Eng. 1964, 111, 921–930.

Nano Research
Pages 4039-4048
Cite this article:
Zhang Y, Zhai W, Hu X, et al. Application of Auger electron spectroscopy in lithium-ion conducting oxide solid electrolytes. Nano Research, 2023, 16(3): 4039-4048. https://doi.org/10.1007/s12274-022-4431-2
Topics:
Part of a topical collection:

1470

Views

8

Crossref

17

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 09 March 2022
Revised: 08 April 2022
Accepted: 14 April 2022
Published: 11 May 2022
© Tsinghua University Press 2022
Return