Graphical Abstract

Strengthening the oxide–metal interfacial synergistic interaction in nanocatalysts is identified as potential strategy to boost intrinsic activities and the availability of active sites by regulating the surface/interface environment of catalysts. Herein, the SnO2/PtNi concave nanocubes (CNCs) enclosed by high-index facets (HIFs) with tunable SnO2 composition are successfully fabricated through combining the hydrothermal and self-assembly method. The interfacial interaction between ultrafine SnO2 nanoparticles and PtNi with HIFs surface structure is characterized by analytical techniques. The as-prepared 0.20%SnO2/PtNi catalyst exhibits extraordinarily high catalytic performance for ethylene glycol electrooxidation (EGOR) in acidic conditions with specific activity of 3.06 mA/cm2, which represents 6.2-fold enhancement compared with the state-of-the-art Pt/C catalyst. Additionally, the kinetic study demonstrates that the strong interfacial interaction between SnO2 and PtNi not only degrades the activation energy barrier during the process of EGOR but also enhances the CO-resistance ability and long-term stability. This study provides a novel perspective to construct highly efficient and stable electrocatalysts for energy conversions.
Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.
Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.
Fu, X. Y.; Wan, C. Z.; Zhang, A. X.; Zhao, Z. P.; Huyan, H. X.; Pan, X. Q.; Du, S. J.; Duan, X. F.; Huang, Y. Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction. Nano Res. 2020, 13, 1472–1478.
Du, H. Y.; Wang, K.; Tsiakaras, P.; Shen, P. K. Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts. Appl. Catal. B Environ. 2019, 258, 117951.
Wang, Y.; Zhuo, H. Y.; Sun, H.; Zhang, X.; Dai, X. P.; Luan, C. L.; Qin, C. L.; Zhao, H. H.; Li, J.; Wang, M. L. et al. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: Promoting highly active sites for ethylene glycol oxidation. ACS Catal. 2019, 9, 442–455.
Niu, Z. Q.; Becknell, N.; Yu, Y.; Kim, D.; Chen, C.; Kornienko, N.; Somorjai, G. A.; Yang, P. D. Anisotropic phase segregation and migration of Pt in nanocrystals enroute to nanoframe catalysts. Nat. Mater. 2016, 15, 1188–1194.
Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.
Lu, Q. Q.; Sun, L. T.; Zhao, X.; Huang, J. S.; Han, C.; Yang, X. R. One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction. Nano Res. 2018, 11, 2562–2572.
Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.
Yang, J. T.; Ning, G. Q.; Yu, L.; Wang, Y.; Luan, C. L.; Fan, A. X.; Zhang, X.; Liu, Y. J.; Dong, Y.; Dai, X. P. et al. Morphology controllable synthesis of PtNi concave nanocubes enclosed by high-index facets supported on porous graphene for enhanced hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 17790–17796.
Wang, Y.; Zhuo, H. Y.; Zhang, X.; Dai, X. P.; Yu, K. M.; Luan, C. L.; Yu, L.; Xiao, Y.; Li, J.; Wang, M. et al. Synergistic effect between undercoordinated platinum atoms and defective nickel hydroxide on enhanced hydrogen evolution reaction in alkaline solution. Nano Energy 2018, 48, 590–599.
Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p–d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.
Rodriguez, J. A.; Liu, P.; Graciani, J.; Senanayake, S. D.; Grinter, D. C.; Stacchiola, D.; Hrbek, J.; Fernández-Sanz, J. Inverse oxide/metal catalysts in fundamental studies and practical applications: A perspective of recent developments. J. Phys. Chem. Lett. 2016, 7, 2627–2639.
Zhu, Y. F.; Zhang, X.; Koh, K.; Kovarik, L.; Fulton, J. L.; Rosso, K. M.; Gutiérrez, O. Y. Inverse iron oxide/metal catalysts from galvanic replacement. Nat. Commun. 2020, 11, 3269.
Lyu, Z.; Zhang, X. G.; Wang, Y. C.; Liu, K.; Qiu, C. Y.; Liao, X. Y.; Yang, W. H.; Xie, Z. X.; Xie, S. F. Amplified interfacial effect in an atomically dispersed RuOx-on-Pd 2D inverse nanocatalyst for high-performance oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 16093–16100.
Wang, L.; Wu, W.; Lei, Z.; Zeng, T.; Tan, Y. Y.; Cheng, N. C.; Sun, X. L. High-performance alcohol electrooxidation on Pt3Sn-SnO2 nanocatalysts synthesized through the transformation of Pt-Sn nanoparticles. J. Mater. Chem. A 2020, 8, 592–598.
Wang, H.; Liu, Z. Y.; Ma, Y. J.; Julian, K.; Ji, S.; Linkov, V.; Wang, R. F. Synthesis of carbon-supported PdSn-SnO2 nanoparticles with different degrees of interfacial contact and enhanced catalytic activities for formic acid oxidation. Phys. Chem. Chem. Phys. 2013, 15, 13999–14005.
Shen, X. C.; Nagai, T.; Yang, F. P.; Zhou, L. Q.; Pan, Y. B.; Yao, L. B.; Wu, D. Z.; Liu, Y. S.; Feng, J.; Guo, J. H. et al. Dual-site cascade oxygen reduction mechanism on SnOx/Pt-Cu-Ni for promoting reaction kinetics. J. Am. Chem. Soc. 2019, 141, 9463–9467.
Luan, C. L.; Zhou, Q. X.; Wang, Y.; Xiao, Y.; Dai X. P.; Huang X. L.; Zhang X. A general strategy assisted with dual reductants and dual protecting agents for preparing Pt-based alloys with high-index facets and excellent electrocatalytic performance. Small 2017, 13, 1702617.
Li, Y. R.; Wang, Y.; Li, S. N.; Li, M. X.; Liu, Y. J.; Fang, X.; Dai, X. P.; Zhang, X. Pt3Mn alloy nanostructure with high-index facets by Sn doping modified for highly catalytic active electro-oxidation reactions. J. Catal. 2021, 395, 282–292.
Huang, H. J.; Wei, Y. J.; Yang, Y.; Yan, M. M.; He, H. Y.; Jiang, Q. G.; Yang, X. F.; Zhu, J. X. Controllable synthesis of grain boundary-enriched Pt nanoworms decorated on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic activity. J. Energy Chem. 2021, 57, 601–609.
Kim, C.; Noh, M.; Choi, M.; Cho, J.; Park, B. Critical size of a nano SnO2 electrode for Li-secondary battery. Chem. Mater. 2005, 17, 3297–3301.
Wang, K. L.; Wang, F.; Zhao, Y. F.; Zhang, W. Q. Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell. J. Energy Chem. 2021, 52, 251–261.
Gruzeł, G.; Piekarz, P.; Pawlyta, M.; Donten, M.; Parlinska-Wojtan, M. Preparation of Pt-skin PtRhNi nanoframes decorated with small SnO2 nanoparticles as an efficient catalyst for ethanol oxidation reaction. ACS Appl. Mater. Interfaces 2019, 11, 22352–22363.
Guan, J. Y.; Zan, Y. X.; Shao, R.; Niu, J.; Dou, M. L.; Zhu, B. N.; Zhang, Z. P.; Wang, F. Phase segregated Pt-SnO2/C nanohybrids for highly efficient oxygen reduction electrocatalysis. Small 2020, 16, 2005048.
Zhu, L. H.; Zhu, H. Z.; Shakouri, M.; Zeng, L. H.; Yang, Z. Q.; Hu, Y. F.; Ye, H. Q.; Wang, H.; Chen, B. H.; Luque, R. Mechanistic insights into interfacial nano-synergistic effects in trimetallic Rh-on-NiCo on-CNTs for room temperature solvent-free hydrogenations. Appl. Catal. B Environ. 2021, 297, 120404.
Yu, L.; Zhou, T. T.; Cao, S. H.; Tai, X. S.; Liu, L. L.; Wang, Y. Suppressing the surface passivation of Pt-Mo nanowires via constructing Mo-Se coordination for boosting HER performance. Nano Res. 2021, 14, 2659–2665.
Song, D. Y.; Wang, S. S.; Liu, R. Z.; Jiang, J. L.; Jiang, Y.; Huang, S. S.; Li, W. R.; Chen, Z. W.; Zhao, B. Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material. Appl. Surf. Sci. 2019, 478, 290–298.
Wang, Y.; Zheng, X. E.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.
Nagasawa, K.; Takao, S.; Nagamatsu, S. I.; Samjeské, G.; Sekizawa, O.; Kaneko, T.; Higashi, K.; Yamamoto, T.; Uruga, T.; Iwasawa, Y. Surface-regulated nano-SnO2/Pt3Co/C cathode catalysts for polymer electrolyte fuel cells fabricated by a selective electrochemical Sn deposition method. J. Am. Chem. Soc. 2015, 137, 12856–12864.
Gao, Q.; Mou, T. Y.; Liu, S. K.; Johnson, G.; Han, X.; Yan, Z. H.; Ji, M. X.; He, Q.; Zhang, S.; Xin, H. L. et al. Monodisperse PdSn/SnOx core/shell nanoparticles with superior electrocatalytic ethanol oxidation performance. J. Mater. Chem. A 2020, 8, 20931–20938.
Liu, M. M.; Tang, W. Q.; Xie, Z. H.; Yu, H. B.; Yin, H. F.; Xu, Y. S.; Zhao, S. L.; Zhou, S. H. Design of highly efficient Pt-SnO2 hydrogenation nanocatalysts using Pt@Sn core–shell nanoparticles. ACS Catal. 2017, 7, 1583–1591.
Zhang, H.; Du, N.; Chen, B. D.; Cui, T. F.; Yang, D. R. Sub-2 nm SnO2 nanocrystals: A reduction/oxidation chemical reaction synthesis and optical properties. Mater. Res. Bull. 2008, 43, 3164–3170.
Sun, L.; Wang, B.; Wang, Y. D. High-temperature gas sensor based on novel Pt single atoms@SnO2 nanorods@SiC nanosheets multi-heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 21808–21817.
Li, Z. X.; Wang, R.; Xue, J. J.; Xing, X. F.; Yu, C. C.; Huang, T. Y.; Chu, J. M.; Wang, K. L.; Dong, C.; Wei, Z. T. et al. Core–shell ZnO@SnO2 nanoparticles for efficient inorganic perovskite solar cells. J. Am. Chem. Soc. 2019, 141, 17610–17616.
Jiang, L. H.; Sun, G. Q.; Zhou, Z. H.; Zhou, W. J.; Xin, Q. Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell. Catal. Today 2004, 93–95, 665–670.
Zheng, J. N.; Lv, J. J.; Li, S. S.; Xue, M. W.; Wang, A. J.; Feng, J. J. One-pot synthesis of reduced graphene oxide supported hollow Ag@Pt core–shell nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation. J. Mater. Chem. A 2014, 2, 3445.
Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett. 2016, 16, 5037–5043.
Chen, H. S.; Benedetti, T. M.; Lian, J. X.; Cheong, S.; O’Mara, P. B.; Sulaiman, K. O.; Kelly, C. H. W.; Scott, R. W. J.; Gooding, J. J.; Tilley, R. D. Role of the secondary metal in ordered and disordered Pt-M intermetallic nanoparticles: An example of Pt3Sn nanocubes for the electrocatalytic methanol oxidation. ACS Catal. 2021, 11, 2235–2243.
Zhu, J. Y.; Chen, S. Q.; Xue, Q.; Li, F. M.; Yao, H. C.; Xu, L.; Chen, Y. Hierarchical porous Rh nanosheets for methanol oxidation reaction. Appl. Catal. B Environ. 2020, 264, 118520.
Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712–8717.
Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. M.; Ju, H. X.; Liu, D. B.; Lin, Y.; Ye, W.; Wang, C. M.; Xu, Q. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935.
Xu, G. R.; Wang, B.; Zhu, J. Y.; Liu, F. Y.; Chen, Y.; Zeng, J. H.; Jiang, J. X.; Liu, Z. H.; Tang, Y. W.; Lee, J. M. Morphological and interfacial control of platinum nanostructures for electrocatalytic oxygen reduction. ACS Catal. 2016, 6, 5260–5267.
Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.
Fan, X. K.; Tang, M.; Wu, X. T.; Luo, S. P.; Chen, W.; Song, X.; Quan, Z. W. SnO2 patched ultrathin PtRh nanowires as efficient catalysts for ethanol electrooxidation. J. Mater. Chem. A 2019, 7, 27377–27382.
Li, R. H.; Liu, Z. Q.; Trinh, Q. T.; Miao, Z. Q.; Chen, S.; Qian, K. C.; Wong, R. J.; Xi, S. B.; Yan, Y.; Borgna, A. et al. Strong metal–support interaction for 2D materials: Application in noble metal/TiB2 heterointerfaces and their enhanced catalytic performance for formic acid dehydrogenation. Adv. Mater. 2021, 33, 2101536.
Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M. B.; Zhang, J.; Marinkovic, N. S.; Liu, P.; Frenkel, A. I.; Adzic, R. R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 2009, 8, 325–330.
Du, W. X.; Yang, G. X.; Wong, E.; Deskins, N. A.; Frenkel, A. I.; Su, D.; Teng, X. W. Platinum-tin oxide core–shell catalysts for efficient electro-oxidation of ethanol. J. Am. Chem. Soc. 2014, 136, 10862–10865.
Li, M.; Cullen, D. A.; Sasaki, K.; Marinkovic, N. S.; More, K.; Adzic, R. R. Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: Making Ir capable of splitting C–C bond. J. Am. Chem. Soc. 2013, 135, 132–141.
Rizo, R.; Bergmann, A.; Timoshenko, J.; Scholten, F.; Rettenmaier, C.; Jeon, H. S.; Chen, Y. T.; Yoon, A.; Bagger, A.; Rossmeisl, J. et al. Pt-Sn-Co nanocubes as highly active catalysts for ethanol electro-oxidation. J. Catal. 2021, 393, 247–258.
Kim, H. J.; Choi, S. M.; Green, S.; Tompsett, G. A.; Lee, S. H.; Huber, G. W.; Kim, W. B. Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol. Appl. Catal. B Environ. 2011, 101, 366–375.
Serov, A.; Kwak, C. Recent achievements in direct ethylene glycol fuel cells (DEGFC). Appl. Catal. B Environ. 2010, 97, 1–12.
Tang, J. X.; Xiao, L. P.; Xiao, C.; Tian, N.; Zhou, Z. Y.; Sun, S. G. Tetrahexahedral PdRh nanocrystals with tunable composition as a highly efficient electrocatalyst for ethylene glycol oxidation. J. Mater. Chem. A 2021, 9, 11049–11055.
Lin, J. L.; Ren, J.; Tian, N.; Zhou, Z. Y.; Sun, S. G. In situ FTIR spectroscopic studies of ethylene glycol electrooxidation on Pd electrode in alkaline solution: The effects of concentration. J. Electroanal. Chem. 2013, 688, 165–171.
Krittayavathananon, A.; Sawangphruk, M. Electrocatalytic oxidation of ethylene glycol on palladium coated on 3D reduced graphene oxide aerogel paper in alkali media: Effects of carbon supports and hydrodynamic diffusion. Electrochim. Acta 2016, 212, 237–246.
Ferrin, P.; Mavrikakis, M. Structure sensitivity of methanol electrooxidation on transition metals. J. Am. Chem. Soc. 2009, 131, 14381–14389.
Liu, G. G.; Zhou, W.; Ji, Y. R.; Chen, B.; Fu, G. T.; Yun, Q. B.; Chen, S. M.; Lin, Y. X.; Yin, P. F.; Cui, X. Y. et al. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core–shell nanoparticles for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 2021, 143, 11262–11270.