AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interfacial synergistic effect in SnO2/PtNi nanocrystals enclosed by high-index facets for high-efficiency ethylene glycol electrooxidation

Shuna Li1,§Haixiao Sun1,§Jiaai Zhang1Longjiao Zheng1Yunrui Li1Xu Fang1Yujie Liu1Qi Song1Zhen Wang1Yufeng Gao1Xin Zhang1( )Xiaoping Dai1Yandi Cai2Fei Gao2( )
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210093, China

§ Shuna Li and Haixiao Sun contributed equally to this work.

Show Author Information

Graphical Abstract

The SnO2/PtNi catalysts enclosed by high-index facets display excellent electrocatalytic activity and long-term durability as well as strong CO resistance for ethylene glycol oxidation, which is ascribed to interfacial synergistic interaction between ultrasmall SnO2 and PtNi concave nanocubes.

Abstract

Strengthening the oxide–metal interfacial synergistic interaction in nanocatalysts is identified as potential strategy to boost intrinsic activities and the availability of active sites by regulating the surface/interface environment of catalysts. Herein, the SnO2/PtNi concave nanocubes (CNCs) enclosed by high-index facets (HIFs) with tunable SnO2 composition are successfully fabricated through combining the hydrothermal and self-assembly method. The interfacial interaction between ultrafine SnO2 nanoparticles and PtNi with HIFs surface structure is characterized by analytical techniques. The as-prepared 0.20%SnO2/PtNi catalyst exhibits extraordinarily high catalytic performance for ethylene glycol electrooxidation (EGOR) in acidic conditions with specific activity of 3.06 mA/cm2, which represents 6.2-fold enhancement compared with the state-of-the-art Pt/C catalyst. Additionally, the kinetic study demonstrates that the strong interfacial interaction between SnO2 and PtNi not only degrades the activation energy barrier during the process of EGOR but also enhances the CO-resistance ability and long-term stability. This study provides a novel perspective to construct highly efficient and stable electrocatalysts for energy conversions.

Electronic Supplementary Material

Download File(s)
12274_2022_4433_MOESM1_ESM.pdf (1.9 MB)

References

1

Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

2

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

3

Fu, X. Y.; Wan, C. Z.; Zhang, A. X.; Zhao, Z. P.; Huyan, H. X.; Pan, X. Q.; Du, S. J.; Duan, X. F.; Huang, Y. Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction. Nano Res. 2020, 13, 1472–1478.

4

Du, H. Y.; Wang, K.; Tsiakaras, P.; Shen, P. K. Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts. Appl. Catal. B Environ. 2019, 258, 117951.

5

Wang, Y.; Zhuo, H. Y.; Sun, H.; Zhang, X.; Dai, X. P.; Luan, C. L.; Qin, C. L.; Zhao, H. H.; Li, J.; Wang, M. L. et al. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: Promoting highly active sites for ethylene glycol oxidation. ACS Catal. 2019, 9, 442–455.

6

Niu, Z. Q.; Becknell, N.; Yu, Y.; Kim, D.; Chen, C.; Kornienko, N.; Somorjai, G. A.; Yang, P. D. Anisotropic phase segregation and migration of Pt in nanocrystals enroute to nanoframe catalysts. Nat. Mater. 2016, 15, 1188–1194.

7

Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.

8

Lu, Q. Q.; Sun, L. T.; Zhao, X.; Huang, J. S.; Han, C.; Yang, X. R. One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction. Nano Res. 2018, 11, 2562–2572.

9

Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

10

Yang, J. T.; Ning, G. Q.; Yu, L.; Wang, Y.; Luan, C. L.; Fan, A. X.; Zhang, X.; Liu, Y. J.; Dong, Y.; Dai, X. P. et al. Morphology controllable synthesis of PtNi concave nanocubes enclosed by high-index facets supported on porous graphene for enhanced hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 17790–17796.

11

Wang, Y.; Zhuo, H. Y.; Zhang, X.; Dai, X. P.; Yu, K. M.; Luan, C. L.; Yu, L.; Xiao, Y.; Li, J.; Wang, M. et al. Synergistic effect between undercoordinated platinum atoms and defective nickel hydroxide on enhanced hydrogen evolution reaction in alkaline solution. Nano Energy 2018, 48, 590–599.

12

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p–d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

13

Rodriguez, J. A.; Liu, P.; Graciani, J.; Senanayake, S. D.; Grinter, D. C.; Stacchiola, D.; Hrbek, J.; Fernández-Sanz, J. Inverse oxide/metal catalysts in fundamental studies and practical applications: A perspective of recent developments. J. Phys. Chem. Lett. 2016, 7, 2627–2639.

14

Zhu, Y. F.; Zhang, X.; Koh, K.; Kovarik, L.; Fulton, J. L.; Rosso, K. M.; Gutiérrez, O. Y. Inverse iron oxide/metal catalysts from galvanic replacement. Nat. Commun. 2020, 11, 3269.

15

Lyu, Z.; Zhang, X. G.; Wang, Y. C.; Liu, K.; Qiu, C. Y.; Liao, X. Y.; Yang, W. H.; Xie, Z. X.; Xie, S. F. Amplified interfacial effect in an atomically dispersed RuOx-on-Pd 2D inverse nanocatalyst for high-performance oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 16093–16100.

16

Wang, L.; Wu, W.; Lei, Z.; Zeng, T.; Tan, Y. Y.; Cheng, N. C.; Sun, X. L. High-performance alcohol electrooxidation on Pt3Sn-SnO2 nanocatalysts synthesized through the transformation of Pt-Sn nanoparticles. J. Mater. Chem. A 2020, 8, 592–598.

17

Wang, H.; Liu, Z. Y.; Ma, Y. J.; Julian, K.; Ji, S.; Linkov, V.; Wang, R. F. Synthesis of carbon-supported PdSn-SnO2 nanoparticles with different degrees of interfacial contact and enhanced catalytic activities for formic acid oxidation. Phys. Chem. Chem. Phys. 2013, 15, 13999–14005.

18

Shen, X. C.; Nagai, T.; Yang, F. P.; Zhou, L. Q.; Pan, Y. B.; Yao, L. B.; Wu, D. Z.; Liu, Y. S.; Feng, J.; Guo, J. H. et al. Dual-site cascade oxygen reduction mechanism on SnOx/Pt-Cu-Ni for promoting reaction kinetics. J. Am. Chem. Soc. 2019, 141, 9463–9467.

19

Luan, C. L.; Zhou, Q. X.; Wang, Y.; Xiao, Y.; Dai X. P.; Huang X. L.; Zhang X. A general strategy assisted with dual reductants and dual protecting agents for preparing Pt-based alloys with high-index facets and excellent electrocatalytic performance. Small 2017, 13, 1702617.

20

Li, Y. R.; Wang, Y.; Li, S. N.; Li, M. X.; Liu, Y. J.; Fang, X.; Dai, X. P.; Zhang, X. Pt3Mn alloy nanostructure with high-index facets by Sn doping modified for highly catalytic active electro-oxidation reactions. J. Catal. 2021, 395, 282–292.

21

Huang, H. J.; Wei, Y. J.; Yang, Y.; Yan, M. M.; He, H. Y.; Jiang, Q. G.; Yang, X. F.; Zhu, J. X. Controllable synthesis of grain boundary-enriched Pt nanoworms decorated on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic activity. J. Energy Chem. 2021, 57, 601–609.

22

Kim, C.; Noh, M.; Choi, M.; Cho, J.; Park, B. Critical size of a nano SnO2 electrode for Li-secondary battery. Chem. Mater. 2005, 17, 3297–3301.

23

Wang, K. L.; Wang, F.; Zhao, Y. F.; Zhang, W. Q. Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell. J. Energy Chem. 2021, 52, 251–261.

24

Gruzeł, G.; Piekarz, P.; Pawlyta, M.; Donten, M.; Parlinska-Wojtan, M. Preparation of Pt-skin PtRhNi nanoframes decorated with small SnO2 nanoparticles as an efficient catalyst for ethanol oxidation reaction. ACS Appl. Mater. Interfaces 2019, 11, 22352–22363.

25

Guan, J. Y.; Zan, Y. X.; Shao, R.; Niu, J.; Dou, M. L.; Zhu, B. N.; Zhang, Z. P.; Wang, F. Phase segregated Pt-SnO2/C nanohybrids for highly efficient oxygen reduction electrocatalysis. Small 2020, 16, 2005048.

26

Zhu, L. H.; Zhu, H. Z.; Shakouri, M.; Zeng, L. H.; Yang, Z. Q.; Hu, Y. F.; Ye, H. Q.; Wang, H.; Chen, B. H.; Luque, R. Mechanistic insights into interfacial nano-synergistic effects in trimetallic Rh-on-NiCo on-CNTs for room temperature solvent-free hydrogenations. Appl. Catal. B Environ. 2021, 297, 120404.

27

Yu, L.; Zhou, T. T.; Cao, S. H.; Tai, X. S.; Liu, L. L.; Wang, Y. Suppressing the surface passivation of Pt-Mo nanowires via constructing Mo-Se coordination for boosting HER performance. Nano Res. 2021, 14, 2659–2665.

28

Song, D. Y.; Wang, S. S.; Liu, R. Z.; Jiang, J. L.; Jiang, Y.; Huang, S. S.; Li, W. R.; Chen, Z. W.; Zhao, B. Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material. Appl. Surf. Sci. 2019, 478, 290–298.

29

Wang, Y.; Zheng, X. E.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

30

Nagasawa, K.; Takao, S.; Nagamatsu, S. I.; Samjeské, G.; Sekizawa, O.; Kaneko, T.; Higashi, K.; Yamamoto, T.; Uruga, T.; Iwasawa, Y. Surface-regulated nano-SnO2/Pt3Co/C cathode catalysts for polymer electrolyte fuel cells fabricated by a selective electrochemical Sn deposition method. J. Am. Chem. Soc. 2015, 137, 12856–12864.

31

Gao, Q.; Mou, T. Y.; Liu, S. K.; Johnson, G.; Han, X.; Yan, Z. H.; Ji, M. X.; He, Q.; Zhang, S.; Xin, H. L. et al. Monodisperse PdSn/SnOx core/shell nanoparticles with superior electrocatalytic ethanol oxidation performance. J. Mater. Chem. A 2020, 8, 20931–20938.

32

Liu, M. M.; Tang, W. Q.; Xie, Z. H.; Yu, H. B.; Yin, H. F.; Xu, Y. S.; Zhao, S. L.; Zhou, S. H. Design of highly efficient Pt-SnO2 hydrogenation nanocatalysts using Pt@Sn core–shell nanoparticles. ACS Catal. 2017, 7, 1583–1591.

33

Zhang, H.; Du, N.; Chen, B. D.; Cui, T. F.; Yang, D. R. Sub-2 nm SnO2 nanocrystals: A reduction/oxidation chemical reaction synthesis and optical properties. Mater. Res. Bull. 2008, 43, 3164–3170.

34

Sun, L.; Wang, B.; Wang, Y. D. High-temperature gas sensor based on novel Pt single atoms@SnO2 nanorods@SiC nanosheets multi-heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 21808–21817.

35

Li, Z. X.; Wang, R.; Xue, J. J.; Xing, X. F.; Yu, C. C.; Huang, T. Y.; Chu, J. M.; Wang, K. L.; Dong, C.; Wei, Z. T. et al. Core–shell ZnO@SnO2 nanoparticles for efficient inorganic perovskite solar cells. J. Am. Chem. Soc. 2019, 141, 17610–17616.

36

Jiang, L. H.; Sun, G. Q.; Zhou, Z. H.; Zhou, W. J.; Xin, Q. Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell. Catal. Today 2004, 93–95, 665–670.

37

Zheng, J. N.; Lv, J. J.; Li, S. S.; Xue, M. W.; Wang, A. J.; Feng, J. J. One-pot synthesis of reduced graphene oxide supported hollow Ag@Pt core–shell nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation. J. Mater. Chem. A 2014, 2, 3445.

38

Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett. 2016, 16, 5037–5043.

39

Chen, H. S.; Benedetti, T. M.; Lian, J. X.; Cheong, S.; O’Mara, P. B.; Sulaiman, K. O.; Kelly, C. H. W.; Scott, R. W. J.; Gooding, J. J.; Tilley, R. D. Role of the secondary metal in ordered and disordered Pt-M intermetallic nanoparticles: An example of Pt3Sn nanocubes for the electrocatalytic methanol oxidation. ACS Catal. 2021, 11, 2235–2243.

40

Zhu, J. Y.; Chen, S. Q.; Xue, Q.; Li, F. M.; Yao, H. C.; Xu, L.; Chen, Y. Hierarchical porous Rh nanosheets for methanol oxidation reaction. Appl. Catal. B Environ. 2020, 264, 118520.

41

Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712–8717.

42

Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. M.; Ju, H. X.; Liu, D. B.; Lin, Y.; Ye, W.; Wang, C. M.; Xu, Q. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935.

43

Xu, G. R.; Wang, B.; Zhu, J. Y.; Liu, F. Y.; Chen, Y.; Zeng, J. H.; Jiang, J. X.; Liu, Z. H.; Tang, Y. W.; Lee, J. M. Morphological and interfacial control of platinum nanostructures for electrocatalytic oxygen reduction. ACS Catal. 2016, 6, 5260–5267.

44

Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

45

Fan, X. K.; Tang, M.; Wu, X. T.; Luo, S. P.; Chen, W.; Song, X.; Quan, Z. W. SnO2 patched ultrathin PtRh nanowires as efficient catalysts for ethanol electrooxidation. J. Mater. Chem. A 2019, 7, 27377–27382.

46

Li, R. H.; Liu, Z. Q.; Trinh, Q. T.; Miao, Z. Q.; Chen, S.; Qian, K. C.; Wong, R. J.; Xi, S. B.; Yan, Y.; Borgna, A. et al. Strong metal–support interaction for 2D materials: Application in noble metal/TiB2 heterointerfaces and their enhanced catalytic performance for formic acid dehydrogenation. Adv. Mater. 2021, 33, 2101536.

47

Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M. B.; Zhang, J.; Marinkovic, N. S.; Liu, P.; Frenkel, A. I.; Adzic, R. R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 2009, 8, 325–330.

48

Du, W. X.; Yang, G. X.; Wong, E.; Deskins, N. A.; Frenkel, A. I.; Su, D.; Teng, X. W. Platinum-tin oxide core–shell catalysts for efficient electro-oxidation of ethanol. J. Am. Chem. Soc. 2014, 136, 10862–10865.

49

Li, M.; Cullen, D. A.; Sasaki, K.; Marinkovic, N. S.; More, K.; Adzic, R. R. Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: Making Ir capable of splitting C–C bond. J. Am. Chem. Soc. 2013, 135, 132–141.

50

Rizo, R.; Bergmann, A.; Timoshenko, J.; Scholten, F.; Rettenmaier, C.; Jeon, H. S.; Chen, Y. T.; Yoon, A.; Bagger, A.; Rossmeisl, J. et al. Pt-Sn-Co nanocubes as highly active catalysts for ethanol electro-oxidation. J. Catal. 2021, 393, 247–258.

51

Kim, H. J.; Choi, S. M.; Green, S.; Tompsett, G. A.; Lee, S. H.; Huber, G. W.; Kim, W. B. Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol. Appl. Catal. B Environ. 2011, 101, 366–375.

52

Serov, A.; Kwak, C. Recent achievements in direct ethylene glycol fuel cells (DEGFC). Appl. Catal. B Environ. 2010, 97, 1–12.

53

Tang, J. X.; Xiao, L. P.; Xiao, C.; Tian, N.; Zhou, Z. Y.; Sun, S. G. Tetrahexahedral PdRh nanocrystals with tunable composition as a highly efficient electrocatalyst for ethylene glycol oxidation. J. Mater. Chem. A 2021, 9, 11049–11055.

54

Lin, J. L.; Ren, J.; Tian, N.; Zhou, Z. Y.; Sun, S. G. In situ FTIR spectroscopic studies of ethylene glycol electrooxidation on Pd electrode in alkaline solution: The effects of concentration. J. Electroanal. Chem. 2013, 688, 165–171.

55

Krittayavathananon, A.; Sawangphruk, M. Electrocatalytic oxidation of ethylene glycol on palladium coated on 3D reduced graphene oxide aerogel paper in alkali media: Effects of carbon supports and hydrodynamic diffusion. Electrochim. Acta 2016, 212, 237–246.

56

Ferrin, P.; Mavrikakis, M. Structure sensitivity of methanol electrooxidation on transition metals. J. Am. Chem. Soc. 2009, 131, 14381–14389.

57

Liu, G. G.; Zhou, W.; Ji, Y. R.; Chen, B.; Fu, G. T.; Yun, Q. B.; Chen, S. M.; Lin, Y. X.; Yin, P. F.; Cui, X. Y. et al. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core–shell nanoparticles for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 2021, 143, 11262–11270.

Nano Research
Pages 7877-7886
Cite this article:
Li S, Sun H, Zhang J, et al. Interfacial synergistic effect in SnO2/PtNi nanocrystals enclosed by high-index facets for high-efficiency ethylene glycol electrooxidation. Nano Research, 2022, 15(9): 7877-7886. https://doi.org/10.1007/s12274-022-4433-0
Topics:

972

Views

14

Crossref

13

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 22 February 2022
Revised: 29 March 2022
Accepted: 14 April 2022
Published: 18 June 2022
© Tsinghua University Press 2022
Return