Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Catalytic degradation of organic pollutants for water remediation over Ag nanoparticles immobilized on amine-functionalized metal-organic frameworks

Wen-Zhe XiaoLing-Ping Xiao()Yue-Qin YangShang-Ru ZhaiRun-Cang Sun()
Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
Show Author Information

Graphical Abstract

View original image Download original image
Ag nanoparticles were immobilized on amine-functionalized metal-organic frameworks (MOFs) to fabricate Ag/UiO-66-NH2 catalysts, which favored strong interactions between the free –NH2 groups and Ag species. This strategy improved the dispersibility of Ag nanoparticles and thereby promoted their catalytic activity and durability for NaBH4-assisted 4-nitrophenol (4-NP) hydrogenation at room temperature, significantly outperforming previously reported catalytic system.

Abstract

Developing efficient catalysts for organic pollutants degradation is crucial for remediating the current severe water environment, yet remains a great challenge. Herein, we report silver nanoparticles immobilized on an amine-functionalized metal-organic framework (MOFs) (Ag/UiO-66-NH2) as a robust catalyst for the reduction of 4-nitrophenol (4-NP). The fabricated Ag/UiO-66-NH2 catalyst exhibits the merits of superior activities (high turnover frequency (TOF) 3.2 × 104 h–1 and k value 6.9 × 10–2 s–1), cost-effectiveness under the lowest NaBH4 concentration (n[NaBH4]/n[4-NP], 200), outstanding cyclability (10 recycling runs), and observable long-term durability, significantly outperforming previously reported catalytic system. The excellent degradation efficiency is ascribed to the favorable microenvironment modulation of unique MOF structure, which regulates the intrinsic properties of active sites and improves the electron-transfer process. Notably, the Ag/UiO-66-NH2 also promotes the catalytic degradation of several organic pollutants at room temperature and hence could find a broad application for water remediation. This work offers a new avenue for the development of high-performance MOF-based catalysts with excellent activity and durability.

Electronic Supplementary Material

Video
12274_2022_4436_MOESM2_ESM.mp4
12274_2022_4436_MOESM3_ESM.mp4
Download File(s)
12274_2022_4436_MOESM1_ESM.pdf (10.3 MB)

References

1

Zhang, Y.; Hu, B.; Cao, X. M.; Luo, L.; Xiong, Y.; Wang, Z. P.; Hong, X.; Ding, S. Y. β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities. Nano Res. 2021, 14, 1018–1025.

2

Liu, J. X.; Heidrich, S.; Liu, J. X.; Guo, B.; Zharnikov, M.; Simon, U.; Wenzel, W.; Wöll, C. Encapsulation of Au55 clusters within surface-supported metal-organic frameworks for catalytic reduction of 4-nitrophenol. ACS Appl. Nano Mater. 2021, 4, 522–528.

3

Fu, L.; Zhou, W.; Wen, M.; Wu, Q. S.; Li, W. Y.; Wu, D. D.; Zhu, Q. J.; Ran, J. Q.; Ren, P. P. Layered CuNi-Cu2O/NiAlOx nanocatalyst for rapid conversion of p-nitrophenol to p-aminophenol. Nano Res. 2021, 14, 4616–4624.

4

Zhao, X. H.; Liu, X.; Yi, C. C.; Li, J. R.; Su, Y. H.; Guo, M. Palladium nanoparticles embedded in yolk-shell N-doped carbon nanosphere@void@SnO2 composite nanoparticles for the photocatalytic reduction of 4-nitrophenol. ACS Appl. Nano Mater. 2020, 3, 6574–6583.

5

Tan, X. F.; Qin, J.; Li, Y.; Zeng, Y. T.; Zheng, G. X.; Feng, F.; Li, H. Self-supporting hierarchical PdCu aerogels for enhanced catalytic reduction of 4-nitrophenol. J. Hazard. Mater. 2020, 397, 122786.

6

Long, L.; Pei, R.; Liu, Y.; Rao, X. P.; Wang, Y. P.; Zhou, S. F.; Zhan, G. W. 3D printing of recombinant Escherichia coli/Au nanocomposites as agitating paddles towards robust catalytic reduction of 4-nitrophenol. J. Hazard. Mater. 2022, 423, 126983.

7

Huang, D. S.; Yang, G. Y.; Feng, X. W.; Lai, X. C.; Zhao, P. X. Triazole-stabilized gold and related noble metal nanoparticles for 4-nitrophenol reduction. New J. Chem. 2015, 39, 4685–4694.

8

Strachan, J.; Barnett, C.; Masters, A. F.; Maschmeyer, T. 4-nitrophenol reduction: Probing the putative mechanism of the model reaction. ACS Catal. 2020, 10, 5516–5521.

9

Gao, C.; Xiao, L. P.; Zhou, J. H.; Wang, H. S.; Zhai, S. R.; An, Q. D. Immobilization of nanosilver onto glycine modified lignin hydrogel composites for highly efficient p-nitrophenol hydrogenation. Chem. Eng. J. 2021, 403, 126370.

10

Soğukömeroğulları, H. G.; Karataş, Y.; Celebi, M.; Gülcan, M.; Sönmez, M.; Zahmakiran, M. Palladium nanoparticles decorated on amine functionalized graphene nanosheets as excellent nanocatalyst for the hydrogenation of nitrophenols to aminophenol counterparts. J. Hazard. Mater. 2019, 369, 96–107.

11

Budi, C. S.; Saikia, D.; Chen, C. S.; Kao, H. M. Catalytic evaluation of tunable Ni nanoparticles embedded in organic functionalized 2D and 3D ordered mesoporous silicas from the hydrogenation of nitroarenes. J. Catal. 2019, 370, 274–288.

12

Guo, M.; Li, H.; Ren, Y. Q.; Ren, X. M.; Yang, Q. H.; Li, C. Improving catalytic hydrogenation performance of Pd nanoparticles by electronic modulation using phosphine ligands. ACS Catal. 2018, 8, 6476–6485.

13

Tian, H.; Liu, X. Y.; Dong, L. B.; Ren, X. M.; Liu, H.; Price, C. A. H.; Li, Y.; Wang, G. X.; Yang, Q. H.; Liu, J. Enhanced hydrogenation performance over hollow structured Co-CoOx@N-C capsules. Adv. Sci. 2019, 6, 1900807.

14

Kaushik, M.; Moores, A. Review: Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 2016, 18, 622–637.

15

Nie, R. F.; Wang, J. H.; Wang, L. N.; Qin, Y.; Chen, P.; Hou, Z. Y. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 2012, 50, 586–596.

16

Lo, L.; Yang, Z. J.; Hung, Y. C.; Tseng, P. Y.; Nomura, M.; Lin, Y. F.; Hu, C. Boosting photoassisted activity for catalytic oxidation of benzoic acid and reduction of 4-nitrophenol with Ag-supported Fe3O4 aerogel. Chem. Eng. J. 2021, 405, 126641.

17

Zhang, X. Q.; Shen, R. F.; Guo, X. J.; Yan, X.; Chen, Y.; Hu, J. T.; Lang, W. Z. Bimetallic Ag-Cu nanoparticles anchored on polypropylene (PP) nonwoven fabrics: Superb catalytic efficiency and stability in 4-nitrophenol reduction. Chem. Eng. J. 2021, 408, 128018.

18

Li, L. Y.; Li, Z. X.; Yang, W. J.; Huang, Y. M.; Huang, G.; Guan, Q. Q.; Dong, Y. M.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Integration of Pd nanoparticles with engineered pore walls in MOFs for enhanced catalysis. Chem 2021, 7, 686–698.

19

Tian, S. B.; Gong, W. B.; Chen, W. X.; Lin, N.; Zhu, Y. Q.; Feng, Q. C.; Xu, Q.; Fu, Q.; Chen, C.; Luo, J. et al. Regulating the catalytic performance of single-atomic-site Ir catalyst for biomass conversion by metal-support interactions. ACS Catal. 2019, 9, 5223–5230.

20

Jackson, C.; Smith, G. T.; Inwood, D. W.; Leach, A. S.; Whalley, P. S.; Callisti, M.; Polcar, T.; Russell, A. E.; Levecque, P.; Kramer, D. Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum. Nat. Commun. 2017, 8, 15802.

21

Chang, S. Q.; Liu, C. C.; Sun, Y. F.; Yan, Z. F.; Zhang, X. H.; Hu, X. D.; Zhang, H. Q. Fe3O4 Nanoparticles coated with Ag-nanoparticle-embedded metal-organic framework MIL-100(Fe) for the catalytic reduction of 4-nitrophenol. ACS Appl. Nano Mater. 2020, 3, 2302–2309.

22

Yang, D.; Gates, B. C. Catalysis by metal organic frameworks: Perspective and suggestions for future research. ACS Catal. 2019, 9, 1779–1798.

23

Chen, J. Q.; Zhong, T.; Lu, X.; Zhao, F.; Wang, P.; Yu, X.; Yang, Y. X.; Sun, F. Y.; Wu, X. C.; Feng, W. 4-aminothiophenol-modulated Ag growth on Au nanoparticles for detection of nitrite. ACS Appl. Nano Mater. 2021, 4, 11674–11680.

24

Guo, S. L.; Yuan, H.; Luo, W.; Liu, X. Q.; Zhang, X. T.; Jiang, H. Q.; Liu, F.; Cheng, G. J. Isolated atomic catalysts encapsulated in MOF for ultrafast water pollutant treatment. Nano Res. 2021, 14, 1287–1293.

25

Diercks, C. S.; Liu, Y. Z.; Cordova, K. E.; Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 2018, 17, 301–307.

26

Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093–2125.

27

Yan, B. L.; Liu, D. P.; Feng, X. L.; Shao, M. Z.; Zhang, Y. Ru species supported on MOF-derived N-doped TiO2/C hybrids as efficient electrocatalytic/photocatalytic hydrogen evolution Reaction Catalysts. Adv. Funct. Mater. 2020, 30, 2003007.

28

Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

29

Feng, L.; Wang, K. Y.; Powell, J.; Zhou, H. C. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 2019, 1, 801–824.

30

Li, B.; Wen, H. M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Emerging multifunctional metal-organic framework materials. Adv. Mater. 2016, 28, 8819–8860.

31

Bao, S. X.; Li, J. Y.; Guan, B. Y.; Jia, M. J.; Terasaki, O.; Yu, J. H. A green selective water-etching approach to MOF@mesoporous SiO2 yolk-shell nanoreactors with enhanced catalytic stabilities. Matter 2020, 3, 498–508.

32

Guo, Z. Y.; Xiao, C. X.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X. L.; Tesfagaber, D.; Thiel, A.; Huang, W. Y. Pt nanoclusters confined within metal-organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal. 2014, 4, 1340–1348.

33

Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

34

Chakarova, K.; Strauss, I.; Mihaylov, M.; Drenchev, N.; Hadjiivanov, K. Evolution of acid and basic sites in UiO-66 and UiO-66-NH2 metal-organic frameworks: FTIR study by probe molecules. Microporous Mesoporous Mater. 2019, 281, 110–122.

35

Sharma, S.; Dutta, V.; Raizada, P.; Hosseini-Bandegharaei, A.; Singh, P.; Nguyen, V. H. Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: A review. Environ. Chem. Lett. 2021, 19, 271–306.

36

Sonu; Dutta, V.; Sharma, S.; Raizada, P.; Hosseini-Bandegharaei, A.; Gupta, V. K.; Singh, P. Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J. Saudi Chem. Soc. 2019, 23, 1119–1136.

37

Hasija, V.; Nguyen, V. H.; Kumar, A.; Raizada, P.; Krishnan, V.; Khan, A. A. P.; Singh, P.; Lichtfouse, E.; Wang, C. Y.; Huong, P. T. Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review. J. Hazard. Mater. 2021, 413, 125324.

38

Hasija, V.; Patial, S.; Raizada, P.; Khan, A. A. P.; Asiri, A. M.; Van Le, Q.; Nguyen, V. H.; Singh, P. Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications. Coord. Chem. Rev. 2022, 452, 214298.

39

Patial, S.; Raizada, P.; Hasija, V.; Singh, P.; Thakur, V. K.; Nguyen, V. H. Recent advances in photocatalytic multivariate metal organic frameworks-based nanostructures toward renewable energy and the removal of environmental pollutants. Mater. Today Energy 2021, 19, 100589.

40

Ahamad, T.; Naushad, M.; Ruksana; Alhabarah, A. N.; Alshehri, S. M. N/S doped highly porous magnetic carbon aerogel derived from sugarcane bagasse cellulose for the removal of bisphenol-A. Int. J. Biol. Macromol. 2019, 132, 1031–1038.

41

Ahamad, T.; Naushad, M.; Al-Saeedi, S. I.; Almotairi, S.; Alshehri, S. M. Fabrication of MoS2/ZnS embedded in N/S doped carbon for the photocatalytic degradation of pesticide. Mater. Lett. 2020, 263, 127271.

42

Jiao, L.; Wang, J. X.; Jiang, H. L. Microenvironment modulation in metal-organic framework-based catalysis. Acc. Mater. Res. 2021, 2, 327–339.

43

Wang, N. N.; Guan, B.; Zhao, Y.; Zou, Y.; Geng, G. W.; Chen, P. L.; Wang, F. Y.; Liu, M. H. Sub-10 nm Ag nanoparticles/graphene oxide: Controllable synthesis, size-dependent and extremely ultrahigh catalytic activity. Small 2019, 15, 1901701.

44

Ji, T.; Chen, L.; Mu, L. W.; Yuan, R. X.; Knoblauch, M.; Bao, F. S.; Zhu, J. H. In-situ reduction of Ag nanoparticles on oxygenated mesoporous carbon fabric: Exceptional catalyst for nitroaromatics reduction. Appl. Catal. B: Environ. 2016, 182, 306–315.

45

Liu, X. C.; Jin, R. X.; Chen, D. S.; Chen, L.; Xing, S. X.; Xing, H. Z.; Xing, Y.; Su, Z. M. In situ assembly of monodispersed Ag nanoparticles in the channels of ordered mesopolymers as a highly active and reusable hydrogenation catalyst. J. Mater. Chem. A 2015, 3, 4307–4313.

46

Han, Y. Y.; Wu, X. D.; Zhang, X. X.; Zhou, Z. H.; Lu, C. H. Reductant-free synthesis of silver nanoparticles-doped cellulose microgels for catalyzing and product separation. ACS Sustainable Chem. Eng. 2016, 4, 6322–6331.

47

Xiong, R.; Lu, C. H.; Wang, Y. R.; Zhou, Z. H.; Zhang, X. X. Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity. J. Mater. Chem. A 2013, 1, 14910–14918.

48

Zhang, H.; Duan, T.; Zhu, W. K.; Yao, W. T. Natural chrysotile-based nanowires decorated with monodispersed Ag nanoparticles as a highly active and reusable hydrogenation catalyst. J. Phys. Chem. C 2015, 119, 21465–21472.

49

Wang, Q.; Jia, W. J.; Liu, B. C.; Dong, A.; Gong, X.; Li, C. Y.; Jing, P.; Li, Y. J.; Xu, G. R.; Zhang, J. Hierarchical structure based on Pd(Au) nanoparticles grafted onto magnetite cores and double layered shells: Enhanced activity for catalytic applications. J. Mater. Chem. A 2013, 1, 12732–12741.

50

Li, H. Y.; Gan, S. Y.; Han, D. X.; Ma, W. G.; Cai, B.; Zhang, W.; Zhang, Q. X.; Niu, L. High performance Pd nanocrystals supported on SnO2-decorated graphene for aromatic nitro compound reduction. J. Mater. Chem. A 2014, 2, 3461–3467.

51

Yang, Y.; Zhu, W. J.; Shi, B. F.; Lü, C. L. Construction of a thermo-responsive polymer brush decorated Fe3O4@catechol-formaldehyde resin core-shell nanosphere stabilized carbon dots/PdNP nanohybrid and its application as an efficient catalyst. J. Mater. Chem. A 2020, 8, 4017–4029.

52

Wu, X. D.; Lu, C. H.; Zhou, Z. H.; Yuan, G. P.; Xiong, R.; Zhang, X. X. Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance. Environ. Sci. :Nano 2014, 1, 71–79.

53

Jin, Q. J.; Ma, L.; Zhou, W.; Shen, Y. S.; Fernandez-Delgado, O.; Li, X. J. Smart paper transformer: New insight for enhanced catalytic efficiency and reusability of noble metal nanocatalysts. Chem. Sci. 2020, 11, 2915–2925.

54

Chen, Y.; Chen, S. Y.; Wang, B. X.; Yao, J. J.; Wang, H. P. TEMPO-oxidized bacterial cellulose nanofibers-supported gold nanoparticles with superior catalytic properties. Carbohydr. Polym. 2017, 160, 34–42.

55

Yan, W.; Chen, C.; Wang, L.; Zhang, D.; Li, A. J.; Yao, Z.; Shi, L. Y. Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity. Carbohydr. Polym. 2016, 140, 66–73.

56

Han, N.; Cao, S. Y.; Han, J.; Hu, Y. M.; Zhang, X. H.; Guo, R. Surface cavities of Ni(OH)2 nanowires can host Au nanoparticles as supported catalysts with high catalytic activity and stability. J. Mater. Chem. A 2016, 4, 2590–2596.

57

Chiu, H. Y.; Wi-Afedzi, T.; Liu, Y. T.; Ghanbari, F.; Lin, K. Y. A. Cobalt oxides with various 3D nanostructured morphologies for catalytic reduction of 4-nitrophenol: A comparative study. J. Water Process. Eng. 2020, 37, 101379.

58

Zhang, M.; Su, X. T.; Ma, L. D.; Khan, A.; Wang, L.; Wang, J. D.; Maloletnev, A. S.; Yang, C. Promotion effects of halloysite nanotubes on catalytic activity of Co3O4 nanoparticles toward reduction of 4-nitrophenol and organic dyes. J. Hazard. Mater. 2021, 403, 123870.

59

Sun, L. L.; Zhang, D. Y.; Sun, Y. M.; Wang, S. Y.; Cai, J. Facile fabrication of highly dispersed Pd@Ag core-shell nanoparticles embedded in Spirulina platensis by electroless deposition and their catalytic properties. Adv. Funct. Mater. 2018, 28, 1707231.

60

Jiang, F.; Li, R. M.; Cai, J. H.; Xu, W.; Cao, A. M.; Chen, D. Q.; Zhang, X.; Wang, C. R.; Shu, C. Y. Ultrasmall Pd/Au bimetallic nanocrystals embedded in hydrogen-bonded supramolecular structures: Facile synthesis and catalytic activities in the reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 19433–19438.

61

Peng, L.; Zhang, J. L.; Yang, S. L.; Han, B. X.; Sang, X. X.; Liu, C. C.; Yang, G. Y. The ionic liquid microphase enhances the catalytic activity of Pd nanoparticles supported by a metal-organic framework. Green Chem. 2015, 17, 4178–4182.

62

Xu, J. W.; Zheng, X. L.; Feng, Z. P.; Lu, Z. Y.; Zhang, Z. W.; Huang, W.; Li, Y. B.; Vuckovic, D.; Li, Y. Q.; Dai, S. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 2021, 4, 233–241.

Nano Research
Pages 7887-7895
Cite this article:
Xiao W-Z, Xiao L-P, Yang Y-Q, et al. Catalytic degradation of organic pollutants for water remediation over Ag nanoparticles immobilized on amine-functionalized metal-organic frameworks. Nano Research, 2022, 15(9): 7887-7895. https://doi.org/10.1007/s12274-022-4436-x
Topics:
Metrics & Citations  
Article History
Copyright
Return