AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

2D-polyimide film sensitized monolayer MoS2 phototransistor enabled near-infrared photodetection

Qingqing Luo1,2Guangyuan Feng1,2Yaru Song1,2Enbing Zhang1,2Jiangyan Yuan1,2Dejuan Fa1,2Qisheng Sun1,2Shengbin Lei1,2( )Wenping Hu1,2
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Show Author Information

Graphical Abstract

A two-dimensional-polyimide (2DPI) sensitized single-layer MoS2 phototransistor was successfully fabricated on Si/SiO2 substrate, near-infrared photodetection with photoresponsivity of 390.5 A/W and specific detectivity of 5.10 × 1012 Jones (λ = 900 nm) has been realized.

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDCs)-based heterostructures open the door to fabricate various promising hybrid photodetectors, while it is still a challenge to achieve excellent and stable near-infrared (NIR) photoresponse. Here, a MoS2–2DPI (2D-polyimide (2DPI)) heterojunction-based phototransistor (HPT) was fabricated. Near-infrared photodetection with excellent performance has been realized. This HPT exhibited a photoresponsivity of 390.5 A/W, a specific detectivity of 5.10 × 1012 Jones, a photogain 1.04 × 105, and a photoresponse rise and decay time of 400 and 430 ms (λ = 900 nm, P = 16.2 μW/cm2), respectively. It also shows a broadband wavelength response from 405 to 1,020 nm. This superior performance could be attributed to the strong near-infrared absorption and the type-II (staggered) band alignment which ensures efficient charge transfer from 2DPI to MoS2. The face-to-face spatial configuration of MoS2–2DPI heterostructures ensures efficient transfer of photoinduced carriers through the interface, electron and holes can be separated due to the large band offsets. This work presents a significant step for the manipulation of high-performance NIR photodetector of two-dimensional covalent organic polymer-sensitized monolayer TMDCs.

Electronic Supplementary Material

Download File(s)
12274_2022_4438_MOESM1_ESM.pdf (674.6 KB)

References

1

Baeg, K. J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y. Y. Organic light detectors: Photodiodes and phototransistors. Adv. Mater. 2013, 25, 4267–4295.

2

Iqbal, M. A.; Liaqat, A.; Hussain, S.; Wang, X. S.; Tahir, M.; Urooj, Z.; Xie, L. M. Ultralow-transition-energy organic complex on graphene for high-performance shortwave infrared photodetection. Adv. Mater. 2020, 32, 2002628.

3

Li, N.; Lan, Z. J.; Cai, L. F.; Zhu, F. R. Advances in solution-processable near-infrared phototransistors. J. Mater. Chem. C 2019, 7, 3711–3729.

4

Liu, C.; Wang, K.; Gong, X.; Heeger, A. J. Low bandgap semiconducting polymers for polymeric photovoltaics. Chem. Soc. Rev. 2016, 45, 4825–4846.

5

Liu, X. D.; Lin, Y. W.; Liao, Y. J.; Wu, J. Z.; Zheng, Y. H. Recent advances in organic near-infrared photodiodes. J. Mater. Chem. C 2018, 6, 3499–3513.

6

Grein, C. H.; Young, P. M.; Flatté, M. E.; Ehrenreich, H. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes. J. Appl. Phys. 1995, 78, 7143–7152.

7

Chaubet, M.; Mollier, J. C.; Sage, J. P.; Roizes, A.; Aubry, Y. Feasibility study of a new heterodyne technique based on HgCdTe varactor photodetectors for space-borne wind lidars. Microw. Opt. Technol. Lett. 1995, 8, 179–184.

8

Myers, S.; Plis, E.; Kim, H. S.; Khoshakhlagh, A.; Gautam, N.; Lee, S. J.; Noh, S. K.; Krishna, S. Heterostructure engineering in type-Ⅱ InAs/GaSb strained layer superlattices. Phys. Status Solidi 2010, 7, 2506–2509.

9

He, L.; Yang, J. R.; Wang, S. L.; Wu, Y.; Fang, W. Z. Recent progress in molecular beam epitaxy of HgCdTe. Adv. Mater. 1999, 11, 1115–1118.

10

Jaworowicz, K.; Ribet-Mohamed, I.; Cervera, C.; Rodriguez, J. B.; Christol, P. Noise characterization of midwave infrared InAs/GaSb superlattice pin photodiode. IEEE Photon. Technol. Lett. 2011, 23, 242–244.

11

Deng, Y. X.; Luo, N.; Conrad, N.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 2014, 8, 8292–8299.

12

Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

13

Komsa, H. P.; Krasheninnikov, A. V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 2013, 88, 085318.

14

Wang, H. Y.; Li, Z. X.; Li, D. Y.; Chen, P.; Pi, L. J.; Zhou, X.; Zhai, T. Y. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv. Funct. Mater. 2021, 31, 2103106.

15

Xue, Y. Z.; Zhang, Y. P.; Liu, Y.; Liu, H. T.; Song, J. C.; Sophia, J.; Liu, J. Y.; Xu, Z. Q.; Xu, Q. Y.; Wang, Z. Y. et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 2016, 10, 573–580.

16

Zhang, J.; Wang, J. H.; Chen, P.; Sun, Y.; Wu, S.; Jia, Z. Y.; Lu, X. B.; Yu, H.; Chen, W.; Zhu, J. Q. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 2016, 28, 1950–1956.

17

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

18

Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J. et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832–5836.

19

Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695–3700.

20

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

21

Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv. Mater. 2015, 27, 176–180.

22

Huo, N. J.; Gupta, S.; Konstantatos, G. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 μm. Adv. Mater. 2017, 29, 1606576.

23

Bullock, J.; Amani, M.; Cho, J.; Chen, Y. Z.; Ahn, G. H.; Adinolfi, V.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Chueh, Y. L. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601–607.

24

Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692–699.

25

Long, M. S.; Liu, E. F.; Wang, P.; Gao, A. Y.; Xia, H.; Luo, W.; Wang, B. G.; Zeng, J. W.; Fu, Y. J.; Xu, K. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 2016, 16, 2254–2259.

26

Xin, Y.; Wang, X. X.; Chen, Z.; Weller, D.; Wang, Y. Y.; Shi, L. J.; Ma, X.; Ding, C. J.; Li, W.; Guo, S. et al. Polarization-sensitive self-powered type-II GeSe/MoS2 van der Waals heterojunction photodetector. ACS Appl. Mater. Interfaces 2020, 12, 15406–15413.

27

Zhang, K. N.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852–3858.

28

Zou, Z. X.; Li, D.; Liang, J. W.; Zhang, X. H.; Liu, H. W.; Zhu, C. G.; Yang, X.; Li, L. H.; Zheng, B. Y.; Sun, X. X. et al. Epitaxial synthesis of ultrathin β-In2Se3/MoS2 heterostructures with high visible/near-infrared photoresponse. Nanoscale 2020, 12, 6480–6488.

29

Liu, X. L.; Chen, X. Q.; Yi, J. X.; Luo, Z. Z.; Nan, H. Y.; Guo, H.; Ni, Z. H.; Ding, Y.; Dai, S. Y.; Wang, X. R. Organic charge–transfer interface enhanced graphene hybrid phototransistors. Org. Electron. 2019, 64, 22–26.

30

Liu, Y.; Hao, W.; Yao, H. Y.; Li, S. Z.; Wu, Y. C.; Zhu, J.; Jiang, L. Solution adsorption formation of a π-conjugated polymer/graphene composite for high-performance field-effect transistors. Adv. Mater. 2018, 30, 1705377.

31

Sun, L. L.; Zeng, W. W.; Xie, C.; Hu, L.; Dong, X. Y.; Qin, F.; Wang, W.; Liu, T. F.; Jiang, X. S.; Jiang, Y. Y. et al. Flexible all-solution-processed organic solar cells with high-performance nonfullerene active layers. Adv. Mater. 2020, 32, 1907840.

32

Huang, Y. L.; Zheng, Y. J.; Song, Z. B.; Chi, D. Z.; Wee, A. T. S.; Quek, S. Y. The organic–2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev. 2018, 47, 3241–3264.

33

Jariwala, D.; Howell, S. L.; Chen, K. S.; Kang, J. M.; Sangwan, V. K.; Filippone, S. A.; Turrisi, R.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Hybrid, gate-tunable, van der Waals p–n heterojunctions from pentacene and MoS2. Nano Lett. 2016, 16, 497–503.

34

He, D. W.; Pan, Y. M.; Nan, H. Y.; Gu, S.; Yang, Z. Y.; Wu, B.; Luo, X. G.; Xu, B. C.; Zhang, Y. H.; Li, Y. et al. A van der Waals p–n heterojunction with organic/inorganic semiconductors. Appl. Phys. Lett. 2015, 107, 183103.

35

Vélez, S.; Ciudad, D.; Island, J.; Buscema, M.; Txoperena, O.; Parui, S.; Steele, G.; Casanova, F.; van der Zant, H. S. J.; Castellanos-Gomez, A. et al. Gate-tunable diode and photovoltaic effect in an organic-2D layered material p–n junction. Nanoscale 2015, 7, 15442–15449.

36

Yu, S. H.; Lee, Y.; Jang, S. K.; Kang, J.; Jeon, J.; Lee, C.; Lee, J. Y.; Kim, H.; Hwang, E.; Lee, S. et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano 2014, 8, 8285–8291.

37

Sun, M. X.; Yang, P. F.; Xie, D.; Sun, Y. L.; Xu, J. L.; Ren, T. L.; Zhang, Y. F. Self-powered MoS2-PDPP3T heterotransistor-based broadband photodetectors. Adv. Electron. Mater. 2018, 5, 1800580.

38

Li, S. Y.; Chen, X. Q.; Liu, F. M.; Chen, Y. F.; Liu, B. Y.; Deng, W. J.; An, B. X.; Chu, F. H.; Zhang, G. Q.; Li, S. L. et al. Enhanced performance of a CVD MoS2 photodetector by chemical in situ n-type doping. ACS Appl. Mater. Interfaces 2019, 11, 11636–11644.

39

Zhou, Y. H.; An, H. N.; Gao, C.; Zheng, Z. Q.; Wang, B. UV–vis–NIR photodetector based on monolayer MoS2. Mater. Lett. 2019, 237, 298–302.

40

Li, Y.; Murthy, A. A.; DiStefano, J. G.; Jung, H. J.; Hao, S. Q.; Villa, C. J.; Wolverton, C.; Chen, X. Q.; Dravid, V. P. MoS2-capped CuxS nanocrystals: A new heterostructured geometry of transition metal dichalcogenides for broadband optoelectronics. Mater. Horiz. 2019, 6, 587–594.

41

Ra, H. S.; Kwak, D. H.; Lee, J. S. A hybrid MoS2 nanosheet-CdSe nanocrystal phototransistor with a fast photoresponse. Nanoscale 2016, 8, 17223–17230.

42

Wu, H. L.; Si, H. N.; Zhang, Z. H.; Kang, Z.; Wu, P. W.; Zhou, L. X.; Zhang, S. C.; Zhang, Z.; Liao, Q. L.; Zhang, Y. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci. 2018, 5, 1801219.

43

Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919.

44

Xiao, P.; Mao, J.; Ding, K.; Luo, W. J.; Hu, W. D.; Zhang, X. J.; Zhang, X. H.; Jie, J. S. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 2018, 30, 1801729.

45

Huang, Y. M.; Zheng, W.; Qiu, Y. F.; Hu, P. G. Effects of organic molecules with different structures and absorption bandwidth on modulating photoresponse of MoS2 photodetector. ACS Appl. Mater. Interfaces 2016, 8, 23362–23370.

46

Bai, F.; Qi, J. J.; Li, F.; Fang, Y. Y.; Han, W. P.; Wu, H. L.; Zhang, Y. A high-performance self-powered photodetector based on monolayer MoS2/perovskite heterostructures. Adv. Mater. Interfaces 2018, 5, 1701275.

47

Agrawal, A. V.; Kaur, K.; Kumar, M. Interfacial study of vertically aligned n-type MoS2 flakes heterojunction with p-type Cu-Zn-Sn-S for self-powered, fast and high performance broadband photodetector. Appl. Surf. Sci. 2020, 514, 145901.

48

Liu, K. J.; Li, J.; Qi, H. Y.; Hambsch, M.; Rawle, J.; Vázquez, A. R.; Nia, A. S.; Pashkin, A.; Schneider, H.; Polozij, M. et al. A two-dimensional polyimide–graphene heterostructure with ultra-fast interlayer charge transfer. Angew. Chem., Int. Ed. 2021, 60, 13859–13864.

49

Luo, P.; Wang, F. K.; Qu, J. Y.; Liu, K. L.; Hu, X. Z.; Liu, K. W.; Zhai, T. Y. Self-driven WSe2/Bi2O2Se van der Waals heterostructure photodetectors with high light on/off ratio and fast response. Adv. Funct. Mater. 2021, 31, 2008351.

50

Liu, J.; Yang, F. X.; Cao, L. L.; Li, B. L.; Yuan, K.; Lei, S. B.; Hu, W. P. A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film. Adv. Mater. 2019, 31, 1902264.

51

Song, X. F.; Liu, X. H.; Yu, D. J.; Huo, C. X.; Ji, J. P.; Li, X. M.; Zhang, S. L.; Zou, Y. S.; Zhu, G. Y.; Wang, Y. J. et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces 2018, 10, 2801–2809.

52

Pak, S.; Jang, A. R.; Lee, J.; Hong, J.; Giraud, P.; Lee, S.; Cho, Y.; An, G. H.; Lee, Y. W.; Shin, H. S. et al. Surface functionalization-induced photoresponse characteristics of monolayer MoS2 for fast flexible photodetectors. Nanoscale 2019, 11, 4726–4734.

53

Peng, Z. Y.; Xu, J. L.; Zhang, J. Y.; Gao, X.; Wang, S. D. Solution-processed high-performance hybrid photodetectors enhanced by perovskite/MoS2 bulk heterojunction. Adv. Mater. Interfaces 2018, 5, 1800505.

54

Wen, Y.; Yin, L.; He, P.; Wang, Z. X.; Zhang, X. K.; Wang, Q. S.; Shifa, T. A.; Xu, K.; Wang, F. M.; Zhan, X. Y. et al. Integrated high-performance infrared phototransistor arrays composed of nonlayered PbS–MoS2 heterostructures with edge contacts. Nano Lett. 2016, 16, 6437–6444.

55

Ding, Y.; Zhou, N.; Gan, L.; Yan, X. X.; Wu, R. Z.; Abidi, I. H.; Waleed, A.; Pan, J.; Ou, X. W.; Zhang, Q. C. et al. Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV–vis–IR photodetectors. Nano Energy 2018, 49, 200–208.

56

Pak, S.; Cho, Y.; Hong, J.; Lee, J.; Lee, S.; Hou, B.; An, G. H.; Lee, Y. W.; Jang, J. E.; Im, H. et al. Consecutive junction-induced efficient charge separation mechanisms for high-performance MoS2/quantum dot phototransistors. ACS Appl. Mater. Interfaces 2018, 10, 38264–38271.

57

Huo, N. J.; Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 P–N homojunction. Nat. Commun. 2017, 8, 572.

58

Huang, Y.; Zhuge, F. W.; Hou, J. X.; Lv, L.; Luo, P.; Zhou, N.; Gan, L.; Zhai, T. Y. Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano 2018, 12, 4062–4073.

59

Furchi, M. M.; Polyushkin, D. K.; Pospischil, A.; Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 2014, 14, 6165–6170.

Nano Research
Pages 8428-8434
Cite this article:
Luo Q, Feng G, Song Y, et al. 2D-polyimide film sensitized monolayer MoS2 phototransistor enabled near-infrared photodetection. Nano Research, 2022, 15(9): 8428-8434. https://doi.org/10.1007/s12274-022-4438-8
Topics:

1050

Views

13

Crossref

13

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 25 January 2022
Revised: 19 March 2022
Accepted: 15 April 2022
Published: 15 June 2022
© Tsinghua University Press 2022
Return