Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Nanomechanical vibration profiling of oocytes

Yongpei Peng1,§Junhui Zhang2,3,4,§Weiwei Xue1Wenjie Wu1Yu Wang1Kainan Mei1Ye Chen1Depeng Rao1Tianhao Yan1Jianye Wang1Yunxia Cao2,3,4()Shangquan Wu1 ()Qingchuan Zhang1 ()
CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230027, China
NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230027, China
Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People’s Republic of China, Anhui Medical University, Hefei 230027, China

§ Yongpei Peng and Junhui Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
Herein, we studied oocytes from nanomotions and characterized the typical life activities of oocytes by nanomechanical vibrations. We combined mechanical research methods with biochemical methods to establish a link between biochemical changes and nanomotions in oocyte development. The exploring of the relationship between nanomechanical signals and the oocytes does not only contribute to assessing oocytes by nanomechanical activities, but also help to both clinical applications and mechanistic studies of development of oocytes.

Abstract

The beginning of a mammalian life commences with a fertilized oocyte. The study of oocytes is certainly one of the most intriguing scientific questions of our time. Herein, we studied oocytes from a mechanical perspective and characterized the typical life activities of oocytes by nanomechanical vibrations. During the development of oocytes from the germinal vesicle (GV) stage to the zygotes, the GV stage oocytes induced a significant nanomechanical vibration, compared with the oocytes in meiosis I (MI) and meiosis II (MII) stages and zygotes. We analyzed the characteristics of mechanical vibrations of oocytes, including the amplitude as well as the frequency. It showed that the amplitude and frequency of nanomechanical vibrations induced by oocytes were caused by the cytoskeleton (microfilaments) and the distribution of metabolic characteristics (mitochondria) within oocytes. This work provides a new perspective for clinical quality assessment and basic research of oocytes, and can open new doors for development of life science.

Electronic Supplementary Material

Download File(s)
12274_2022_4439_MOESM1_ESM.pdf (397.3 KB)

References

[1]

Keefe, D.; Kumar, M.; Kalmbach, K. Oocyte competency is the key to embryo potential. Fertil. Steril. 2015, 103, 317–322.

[2]

Sun, H.; Gong, T. T.; Jiang, Y. T.; Zhang, S.; Zhao, Y. H.; Wu, Q. J. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: Results from a global burden of disease study, 2017. Aging (Albany NY) 2019, 11, 10952–10991.

[3]
Rizk, B.; Agarwal, A.; Sabanegh, E. S. Jr. Male Infertility in Reproductive Medicine: Diagnosis and Management; CRC Press: New York, 2019.
[4]

Cohen, J.; Trounson, A.; Dawson, K.; Jones, H.; Hazekamp, J.; Nygren, K. G.; Hamberger, L. The early days of IVF outside the UK. Hum. Reprod. Update 2005, 11, 439–460.

[5]

Niringiyumukiza, J. D.; Cai, H. C.; Xiang, W. P. Prostaglandin E2 involvement in mammalian female fertility: Ovulation, fertilization, embryo development and early implantation. Reprod. Biol. Endocrinol. 2018, 16, 43.

[6]

Ouandaogo, Z. G.; Frydman, N.; Hesters, L.; Assou, S.; Haouzi, D.; Dechaud, H.; Frydman, R.; Hamamah, S. Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Hum. Reprod. 2012, 27, 2438–2447.

[7]

Zaninovic, N.; Rosenwaks, Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil. Steril. 2020, 114, 914–920.

[8]

Labarta, E.; de Los Santos, M. J.; Escribá, M. J.; Pellicer, A.; Herraiz, S. Mitochondria as a tool for oocyte rejuvenation. Fertil. Steril. 2019, 111, 219–226.

[9]

Liu, C. J.; Su, K. T.; Chen, L.; Zhao, Z. J.; Wang, X.; Yuan, C. F.; Liang, Y. Q.; Ji, H. L.; Li, C. J.; Zhou, X. Prediction of oocyte quality using mRNA transcripts screened by RNA sequencing of human granulosa cells. Reprod. BioMed. Online 2021, 43, 413–420.

[10]

Dumollard, R.; Ward, Z.; Carroll, J.; Duchen, M. R. Regulation of redox metabolism in the mouse oocyte and embryo. Development 2007, 134, 455–465.

[11]

Sutton-McDowall, M. L.; Gilchrist, R. B.; Thompson, J. G. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010, 139, 685–695.

[12]

Lee, S.; Kang, H. G.; Jeong, P. S.; Nanjidsuren, T.; Song, B. S.; Jin, Y. B.; Lee, S. R.; Kim, S. U.; Sim, B. W. Effect of oocyte quality assessed by brilliant cresyl blue (BCB) staining on cumulus cell expansion and sonic hedgehog signaling in porcine during in vitro maturation. Int. J. Mol. Sci. 2020, 21, 4423.

[13]

Zhang, Z. G.; Mu, Y. Q.; Ding, D.; Zou, W. W.; Li, X. Y.; Chen, B. L.; Leung, P. C.; Chang, H. M.; Zhu, Q.; Wang, K. J. et al. Melatonin improves the effect of cryopreservation on human oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma. J. Pineal Res. 2021, 70, e12707.

[14]

Ling, L.; Feng, X. S.; Wei, T. Q.; Wang, Y.; Wang, Y. P.; Wang, Z. L.; Tang, D. Y.; Luo, Y. J.; Xiong, Z. G. Human amnion-derived mesenchymal stem cell (HAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism. Stem Cell Res. Ther. 2019, 10, 46.

[15]

Longo, G.; Alonso-Sarduy, L.; Rio, L. M.; Bizzini, A.; Trampuz, A.; Notz, J.; Dietler, G.; Kasas, S. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat. Nanotechnol. 2013, 8, 522–526.

[16]

Kasas, S.; Ruggeri, F. S.; Benadiba, C.; Maillard, C.; Stupar, P.; Tournu, H.; Dietler, G.; Longo, G. Detecting nanoscale vibrations as signature of life. Proc. Natl. Acad. Sci. USA 2015, 112, 378–381.

[17]

Nelson, S. L.; Proctor, D. T.; Ghasemloonia, A.; Lama, S.; Zareinia, K.; Ahn, Y.; Al-Saiedy, M. R.; Green, F. H.; Amrein, M. W.; Sutherland, G. R. Vibrational profiling of brain tumors and cells. Theranostics 2017, 7, 2417–2430.

[18]

Wu, S. Q.; Liu, X. L.; Zhou, X. R.; Liang, X. M.; Gao, D. Y.; Liu, H.; Zhao, G.; Zhang, Q. C.; Wu, X. P. Quantification of cell viability and rapid screening anti-cancer drug utilizing nanomechanical fluctuation. Biosens. Bioelectron. 2016, 77, 164–173.

[19]

Pelling, A. E.; Sehati, S.; Gralla, E. B.; Gimzewski, J. K. Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast. Nanomedicine 2005, 1, 178–183.

[20]
Pelling, A. E.; Sehati, S.; Gralla, E. B.; Valentine, J. S.; Gimzewski, J. K. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 2004, 305, 1147–1150.
[21]

Wu, S. Q.; Zhang, Z. G.; Zhou, X. R.; Liu, H.; Xue, C. G.; Zhao, G.; Cao, Y. X.; Zhang, Q. C.; Wu, X. P. Nanomechanical sensors for direct and rapid characterization of sperm motility based on nanoscale vibrations. Nanoscale 2017, 9, 18258–18267.

[22]

Wu, S. Q.; Liu, H.; Cheng, T.; Zhou, X. R.; Wang, B. M.; Zhang, Q. C.; Wu, X. P. Highly sensitive nanomechanical assay for the stress transmission of carbon chain. Sens. Actuators B Chem. 2013, 186, 353–359.

[23]

Wu, S. Q.; Nan, T. G.; Xue, C. G.; Cheng, T.; Liu, H.; Wang, B. M.; Zhang, Q. C.; Wu, X. P. Mechanism and enhancement of the surface stress caused by a small-molecule antigen and antibody binding. Biosens. Bioelectron. 2013, 48, 67–74.

[24]

Stupar, P.; Opota, O.; Longo, G.; Prod'Hom, G.; Dietler, G.; Greub, G.; Kasas, S. Nanomechanical sensor applied to blood culture pellets: A fast approach to determine the antibiotic susceptibility against agents of bloodstream infections. Clin. Microbiol. Infect. 2017, 23, 400–405.

[25]

Rong, W. Z.; Pelling, A. E.; Ryan, A.; Gimzewski, J. K.; Friedlander, S. K. Complementary TEM and AFM force spectroscopy to characterize the nanomechanical properties of nanoparticle chain aggregates. Nano Lett. 2004, 4, 2287–2292.

[26]
Cross, S. E.; Kreth, J.; Zhu, L.; Qi, F. X.; Pelling, A. E.; Shi, W. Y.; Gimzewski, J. K. Atomic force microscopy study of the structure–function relationships of the biofilm-forming bacterium Streptococcus mutans. Nanotechnology 2006, 17, S1–S7.
[27]

Andolfi, L.; Masiero, E.; Giolo, E.; Martinelli, M.; Luppi, S.; Dal Zilio, S.; Delfino, I.; Bortul, R.; Zweyer, M.; Ricci, G. et al. Investigating the mechanical properties of zona pellucida of whole human oocytes by atomic force spectroscopy. Integr. Biol. (Camb) 2016, 8, 886–893.

[28]

Pujol-Vila, F.; Escudero, P.; Güell-Grau, P.; Pascual-Izarra, C.; Villa, R.; Alvarez, M. Direct color observation of light-driven molecular conformation-induced stress. Small Methods 2022, 6, e2101283.

[29]

Vandenberg, E. T.; Bertilsson, L.; Liedberg, B.; Uvdal, K.; Erlandsson, R.; Elwing, H.; Lundström, I. Structure of 3-aminopropyl triethoxy silane on silicon oxide. J. Colloid Interface Sci. 1991, 147, 103–118.

[30]

Liu, Y. M.; Wang, J. Y.; Su, Y.; Xu, X. H.; Liu, H.; Mei, K. N.; Lan, S. H.; Zhang, S. B.; Wu, X. P.; Cao, Y. X. et al. Quantifying 3D cell-matrix interactions during mitosis and the effect of anticancer drugs on the interactions. Nano Res. 2021, 14, 4163–4172.

[31]

Yan, T. H.; Rao, D. P.; Chen, Y.; Wang, Y.; Zhang, Q. C.; Wu, S. Q. Magnetic nanocomposite hydrogel with tunable stiffness for probing cellular responses to matrix stiffening. Acta Biomater. 2022, 138, 112–123.

[32]

Sun, Y.; Wan, K. T.; Roberts, K. P.; Bischof, J. C.; Nelson, B. J. Mechanical property characterization of mouse zona pellucida. IEEE Trans. Nanobioscience 2003, 2, 279–286.

[33]

Şen, U. Maturation of bovine oocytes under low culture temperature decreased glutathione peroxidase activity of both oocytes and blastocysts. Pol. J. Vet. Sci. 2021, 24, 93–99.

[34]
Jin, X.; Wang, K. H.; Wang, L.; Liu, W. W.; Zhang, C.; Qiu, Y. X.; Liu, W.; Zhang, H. Y.; Zhang, D.; Yang, Z. X. et al. RAB7 activity is required for the regulation of mitophagy in oocyte meiosis and oocyte quality control during ovarian aging. Autophagy, in press, https://doi.org/10.1080/15548627.2021.1946739.
[35]

Mertens, J.; Cuervo, A.; Carrascosa, J. L. Nanomechanical detection of Escherichia coli infection by bacteriophage T7 using cantilever sensors. Nanoscale 2019, 11, 17689–17698.

[36]

Gordon, J. L. Extracellular ATP: Effects, sources and fate. Biochem. J. 1986, 233, 309–319.

[37]

Stupar, P.; Chomicki, W.; Maillard, C.; Mikeladze, D.; Kalauzi, A.; Radotić, K.; Dietler, G.; Kasas, S. Mitochondrial activity detected by cantilever based sensor. Mech. Sci. 2017, 8, 23–28.

[38]

Duan, X.; Sun, S. C. Actin cytoskeleton dynamics in mammalian oocyte meiosis. Biol. Reprod. 2019, 100, 15–24.

[39]

Dufrêne, Y. F.; Pelling, A. E. Force nanoscopy of cell mechanics and cell adhesion. Nanoscale 2013, 5, 4094–4104.

Nano Research
Pages 2672-2681
Cite this article:
Peng Y, Zhang J, Xue W, et al. Nanomechanical vibration profiling of oocytes. Nano Research, 2023, 16(2): 2672-2681. https://doi.org/10.1007/s12274-022-4439-7
Topics:
Metrics & Citations  
Article History
Copyright
Return