AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The modulation of catalytic active site and support to construct high-efficiency ZnS/NC-X electrocatalyst for nitrogen reduction

Peng Wang1,2Sijia Zhao1Zijing Liu1Caiyun Han1Shuang Wang1,2( )Jinping Li2( )
College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China
Show Author Information

Graphical Abstract

The ZnS/NC-X catalyst was prepared by in-situ sulfidation of zeolitic imidazolate framework-8 (ZIF-8). Especially, the ZnS/NC-2 with the matched catalytic active site and support exhibited the remarkable NH3 yield (65.60 μg·h−1·mg−1cat) and Faraday Efficiency (18.52%).

Abstract

Transition metals are a kind of promising catalysts to apply into electrocatalytic synthesis ammonia by virtue of abundant reserves and low cost. However, many widely used transition metal catalysts usually face the challenge to realize satisfactory catalytic results mainly resulting from the match between catalytic active site and support. Here, a new-type ZnS/NC-X electrocatalyst was reported by in-situ sulfidation of zeolitic imidazolate framework-8 (ZIF-8), where the metal nodes of ZIF-8 reacted with dibenzyl disulfide (BDS) to obtain ZnS nanoparticles and the framework of ZIF-8 was carbonized to form the support. Especially, catalytic active sites (ZnS nanoparticles) and support (NC-X) were adjusted in detailed by changing the ratio of ZIF-8 and BDS. As a result, when the mass ratio of ZIF-8 and BDS was 1:1, the resulted ZnS/NC-2 catalyst achieved a remarkable NH3 yield of 65.60 μg·h−1·mg−1cat., Faradaic efficiency (FE) of 18.52% at −0.4 V vs reversible hydrogen electrode (RHE) in 0.05 M H2SO4 and catalytic stability, which outperformed most reported transition metal sulfides. The matching catalytic active site and support make our strategy promising for wide catalytic applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4442_MOESM1_ESM.pdf (2.5 MB)

References

1

Cheng, H.; Cui, P. X.; Wang, F. R.; Ding, L. X.; Wang, H. H. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angew. Chem., Int. Ed. 2019, 58, 15541–15547.

2

Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

3

Guo, D. X.; Wang, S.; Xu, J.; Zheng, W. J.; Wang, D. H. Defect and interface engineering for electrochemical nitrogen reduction reaction under ambient conditions. J. Energy Chem. 2022, 65, 448–468.

4

Guo, X. X.; Du, H. T.; Qu, F. L.; Li, J. H. Recent progress in electrocatalytic nitrogen reduction. J. Mater. Chem. A 2019, 7, 3531–3543.

5

Kong, X.; Peng, H. Q.; Bu, S. Y.; Gao, Q. L.; Jiao, T. P.; Cheng, J. Y.; Liu, B.; Hong, G.; Lee, C. S.; Zhang, W. J. Defect engineering of nanostructured electrocatalysts for enhancing nitrogen reduction. J. Mater. Chem. A 2020, 8, 7457–7473.

6

Wang, J.; Chen, S. L.; Li, Z. J.; Li, G. K.; Liu, X. E. Recent advances in electrochemical synthesis of ammonia through nitrogen reduction under ambient conditions. ChemElectroChem 2020, 7, 1067–1079.

7

Deng, J.; Iñiguez, J. A.; Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018, 2, 846–856.

8

Li, H. W.; Li, T. T.; Qian, J. J.; Mei, Y.; Zheng, Y. Q. CuCo2S4 integrated multiwalled carbon nanotube as high-performance electrocatalyst for electroreduction of nitrogen to ammonia. Int. J. Hydrog. Energy 2020, 45, 14640–14647.

9
Zhang, L. F.; Zhao, W. H.; Zhang, W. H.; Chen, J.; Hu, Z. P. gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181–1186.https://doi.org/10.1007/s12274-019-2378-8
10

Xu, T.; Ma, B. Y.; Liang, J.; Yue, L. C.; Liu, Q.; Li, T. S.; Zhao, H. T.; Luo, Y. L.; Lu, S. Y.; Sun, X. P. Recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction. Acta Phys. Chim. Sin. 2021, 37, 2009043.

11

Kong, J. M.; Kim, M. S.; Akbar, R.; Park, H. Y.; Jang, J. H.; Kim, H.; Hur, K.; Park, H. S. Electrochemical nitrogen reduction kinetics on a copper sulfide catalyst for NH3 synthesis at low temperature and atmospheric pressure. ACS Appl. Mater. Interfaces 2021, 13, 24593–24603.

12

Chu, K.; Li, X. C.; Li, Q. Q.; Guo, Y. L.; Zhang, H. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene. Small 2021, 17, 2102363.

13

Cao, N.; Zheng, G. F. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992–3008.

14

Zhao, X. X.; Feng, J. R.; Liu, J. W.; Lu, J.; Shi, W.; Yang, G. M.; Wang, G. C.; Feng, P. Y.; Cheng, P. Metal-organic framework-derived ZnO/ZnS heteronanostructures for efficient visible-light-driven photocatalytic hydrogen production. Adv. Sci. 2018, 5, 1700590.

15

Song, J.; Dai, J.; Zhang, P. ; Liu, Y. T.; Yu, J. Y.; Ding, B. g-C3N4 encapsulated ZrO2 nanofibrous membrane decorated with CdS quantum dots: A hierarchically structured, self-supported electrocatalyst toward synergistic NH3 synthesis. Nano Res. 2021, 14, 1479–1487.

16

Zhu, X. J.; Mou, S. Y.; Peng, Q. L.; Liu, Q.; Luo, Y. L.; Chen, G.; Gao, S. Y.; Sun, X. P. Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement. J. Mater. Chem. A 2020, 8, 1545–1556.

17

Feng, J. X.; Pan, H. Electronic state optimization for electrochemical N2 reduction reaction in aqueous solution. J. Mater. Chem. A 2020, 8, 13896–13915.

18

Li, X. C.; Luo, Y. J.; Li, Q. Q.; Guo, Y. L.; Chu, K. Constructing an electron-rich interface over an Sb/Nb2CTx-MXene heterojunction for enhanced electrocatalytic nitrogen reduction. J. Mater. Chem. A 2021, 9, 15955–15962.

19

Shi, L.; Yin, Y.; Wang, S. B.; Sun, H. Q. Rational catalyst design for N2 reduction under ambient conditions: Strategies toward enhanced conversion efficiency. ACS Catal. 2020, 10, 6870–6899.

20

Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.

21

Xiong, W.; Guo, Z.; Zhao, S. J.; Wang, Q.; Xu, Q. Y.; Wang, X. W. Facile, cost-effective plasma synthesis of self-supportive FeSx on Fe foam for efficient electrochemical reduction of N2 under ambient conditions. J. Mater. Chem. A 2019, 7, 19977–19983.

22

Chu, K.; Luo, Y. J.; Shen, P.; Li, X. C.; Li, Q. Q.; Guo, Y. L. Unveiling the synergy of O-vacancy and heterostructure over MoO3–x/MXene for N2 electroreduction to NH3. Adv. Energy Mater. 2022, 12, 2103022.

23

Liu, D.; Chen, M. P.; Du, X. Y.; Ai, H. Q.; Lo, K. H.; Wang, S. P.; Chen, S.; Xing, G. C.; Wang, X. S.; Pan, H. Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv. Funct. Mater. 2021, 31, 2008983.

24

Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.

25

Kim, H. S.; Choi, J.; Kong, J. M.; Kim, H.; Yoo, S. J.; Park, H. S. Regenerative electrocatalytic redox cycle of copper sulfide for sustainable NH3 production under ambient conditions. ACS Catal. 2021, 11, 435–445.

26

Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2020, 13, 209–214.

27

Chu, K.; Liu, Y. P.; Li, Y. B.; Guo, Y. L.; Tian, Y. Two-dimensional (2D)/2D Interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 2020, 12, 7081–7090.

28

Mishra, S.; Supraja, P.; Sankar, P. R.; Kumar, R. R.; Prakash, K.; Haranath, D. Controlled synthesis of luminescent ZnS nanosheets with high piezoelectric performance for designing mechanical energy harvesting device. Mater. Chem. Phys. 2022, 277, 125264.

29

Rao, H. B.; Lu, Z. W.; Liu, X.; Ge, H. W.; Zhang, Z. Y.; Zou, P.; He, H.; Wang, Y. Y. Visible light-driven photocatalytic degradation performance for methylene blue with different multi-morphological features of ZnS. RSC Adv. 2016, 6, 46299–46307.

30

Fu, X.; Li, H.; Lv, R.; Hong, D.; Yang, B. Y.; Gu, W.; Liu, X. Synthesis of Mn2+ doped ZnS quantum dots/ZIF-8 composite and its applications as a fluorescent probe for sensing Co2+ and dichromate. J. Solid State Chem. 2018, 264, 35–41.

31

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

32

Wang, S.; Lu, A. L.; Zhong, C. J. Hydrogen production from water electrolysis: Role of catalysts. Nano Converg. 2021, 8, 4.

33

Chen, X. X.; Liu, Y. T.; Ma, C. L.; Yu, J. Y.; Ding, B. Self-organized growth of flower-like SnS2 and forest-like ZnS nanoarrays on nickel foam for synergistic superiority in electrochemical ammonia synthesis. J. Mater. Chem. A 2019, 7, 22235–22241.

34

Chang, C. J.; Chen, J. K.; Lin, K. S.; Huang, C. Y.; Huang, C. L. Improved H2 production of ZnO@ZnS nanorod-decorated Ni foam immobilized photocatalysts. Int. J. Hydrog. Energy 2021, 46, 11357–11368.

35

Chang, C. J.; Chao, P. Y. Efficient photocatalytic hydrogen production by doped ZnS grown on Ni foam as porous immobilized photocatalysts. Int. J. Hydrog. Energy 2019, 44, 20805–20814.

36

Yan, Y. J.; Yang, M.; Wang, C. J.; Liu, E. Z.; Hu, X. Y.; Fan, J. Defected ZnS/bulk g-C3N4 heterojunction with enhanced photocatalytic activity for dyes oxidation and Cr(Ⅵ) reduction. Colloids Surf. A Physicochem. Eng. Asp. 2019, 582, 123861.

37

Shuang, W.; Li, A.; Wang, D. H.; Chang, Z. Facile synthesis of ZnS and derived quantum dots from ZIF-8 precursor: Synthesis, characterization and optical properties. J. Solid State Chem. 2019, 276, 159–163.

38

Park, H. S.; Ko, W. B. Preparation of ZnS-graphene nanocomposites under electric furnace and photocatalytic degradation of organic dyes. J. Nanosci. Nanotechnol. 2014, 14, 8646–8653.

39

Zhao, Y. Q.; Song, B.; Cui, X.; Ren, Y.; Yue, W. J.; Wang, Y. Q. High electrocatalytic reduction using ZnS micropolyhedron: Direct sulfuration of ZIF-8 film on conducting glass by chemical vapour deposition. Mater. Lett. 2019, 250, 193–196.

40

Chameh, B.; Moradi, M.; Kaveian, S. Synthesis of hybrid ZIF-derived binary ZnS/CoS composite as high areal-capacitance supercapacitor. Synth. Met. 2020, 260, 116262.

41

Zhao, J. X.; Liu, X. J.; Ren, X.; Sun, X.; Tian, D. X.; Wei, Q.; Wu, D. Defect-rich ZnS nanoparticles supported on reduced graphene oxide for high-efficiency ambient N2-to-NH3 conversion. Appl. Catal. B-Environ. 2021, 284, 119746.

42

Guan, Y. R.; Lai, J. P.; Xu, G. B. Recent advances on electrocatalysis using pristinely conductive metal-organic frameworks and covalent organic frameworks. ChemElectroChem 2021, 8, 2764–2777.

43

Hu, K. Q.; Huang, Z. W.; Zeng, L. W.; Zhang, Z. H.; Mei, L.; Chai, Z. F.; Shi, W. Q. Recent advances in MOF-based materials for photocatalytic nitrogen fixation. Eur. J. Inorg. Chem. 2022, 2022, e202100748.

44

Zhai, Z. B.; Yan, W.; Dong, L.; Deng, S. Q.; Wilkinson, D. P.; Wang, X. M.; Zhang, L.; Zhang, J. J. Catalytically active sites of MOF-derived electrocatalysts: Synthesis, characterization, theoretical calculations, and functional mechanisms. J. Mater. Chem. A 2021, 9, 20320–20344.

45

Chen, Z. L.; Wu, R. B.; Wang, H.; Jiang, Y. K.; Jin, L.; Guo, Y. H.; Song, Y.; Fang, F.; Sun, D. L. Construction of hybrid hollow architectures by in-situ rooting ultrafine ZnS nanorods within porous carbon polyhedra for enhanced lithium storage properties. Chem. Eng. J. 2017, 326, 680–690.

46

Zhang, Q. S.; Xiao, Y.; Li, Y. M.; Zhao, K. Y.; Deng, H. F.; Lou, Y. B.; Chen, J. X.; Cheng, L. NiS-decorated ZnO/ZnS nanorod heterostructures for enhanced photocatalytic hydrogen production: Insight into the role of NiS. Solar RRL. 2020, 4, 1900568.

47

Jing, Y. Q.; Yin, H. F.; Zhang, Y. H.; Yu, B. H. MOF-derived Zn, S, and P Co-doped nitrogen-enriched carbon as an efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 2020, 45, 19174–19180.

48

Tang, M. Y.; Jiang, X. L.; He, M.; Jiang, N.; Zheng, Q. J.; Lin, D. M. B (boron), O (oxygen) dual-doped carbon spheres as a high-efficiency electrocatalyst for nitrogen reduction. Int. J. Hydrog. Energy 2021, 46, 439–448.

49

Wu, T. W.; Li, X. Y.; Zhu, X. J.; Mou, S. Y.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zhang, Y. N.; Zheng, B. Z.; Zhao, H. T. et al. P-doped graphene toward enhanced electrocatalytic N2 reduction. Chem. Commun. 2020, 56, 1831–1834.

50

Gu, T.; Ren, J.; Zhang, S. F.; Guo, H.; Wang, H. Q.; Ren, R. P.; Lv, Y. K. Constructing MoS2/ZnS-NC heterostructures on carbon cloth as anode with enhanced diffusion kinetics for lithium-ion batteries. J. Alloys Compd. 2022, 901, 163650.

51

Wang, Y. H.; Liu, R. N.; Tian, Y. D.; Sun, Z.; Huang, Z. H.; Wu, X. L.; Li, B. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chem. Eng. J. 2020, 384, 123263.

52

Guan, B. Y.; Zhang, S. L.; Lou, X. W. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angew. Chem., Int. Ed. 2018, 57, 6176–6180.

53

Chen, G. R.; Yan, Y. X.; Wang, J.; Ok, Y. S.; Zhong, G. Y.; Guan, B. Y.; Yamauchi, Y. General formation of macro-/mesoporous nanoshells from interfacial assembly of irregular mesostructured nanounits. Angew. Chem., Int. Ed. 2020, 59, 19663–19668.

54
Luo, Y. J. ; Shen, P. ; Li, X. C. ; Guo, Y. L. ; Chu, K. Sulfur-deficient Bi2S3–x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-022-4097-9.
55

Luo, Y. J.; Li, Q. Q.; Tian, Y.; Liu, Y. P.; Chu, K. Amorphization engineered VSe2−x nanosheets with abundant Se-vacancies for enhanced N2 electroreduction. J. Mater. Chem. A 2022, 10, 1742–1749.

Nano Research
Pages 7903-7909
Cite this article:
Wang P, Zhao S, Liu Z, et al. The modulation of catalytic active site and support to construct high-efficiency ZnS/NC-X electrocatalyst for nitrogen reduction. Nano Research, 2022, 15(9): 7903-7909. https://doi.org/10.1007/s12274-022-4442-z
Topics:

1217

Views

7

Crossref

9

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 11 March 2022
Revised: 09 April 2022
Accepted: 15 April 2022
Published: 31 May 2022
© Tsinghua University Press 2022
Return