AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Single-electron charging and ultrafast dynamics of bimetallic Au144−xAgx(PET)60 nanoclusters

Xiangsha Du1,§Hedi Ma2,§Xinwen Zhang3,§Meng Zhou4Zhongyu Liu1He Wang3( )Gangli Wang2( )Rongchao Jin1( )
Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, USA
Department of Physics, University of Miami, Coral Gables, Florida 33146, USA
Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China

§ Xiangsha Du, Hedi Ma, and Xinwen Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Ag doping into the 144-atom gold nanocluster influences single-electron charging and ultrafast dynamics of M144 nanoclusters.

Abstract

Alloying is an important strategy in tailoring the functionality of materials. In metal nanoclusters (NCs), the introduction of a heterometal leads to alloy nanoclusters that often outperform the homometal ones in terms of the physical and chemical properties. In this work, a series of four M144(PET)60 alloy NCs (where, M = Au/Ag, PET = –SCH2CH2Ph) are synthesized and characterized. The silver doping into the homogold template (Au144) leads to more prominent optical absorption features in the steady-state spectrum in the visible range. Femtosecond transient absorption spectroscopy reveals the effect of Ag doping on the electronic relaxation dynamics compared to Au144 and the pump fluence independent dynamics. Electrochemical results reflect a narrowing of HOMO–LUMO gap (Eg) induced by Ag doping. A temperature dependence of the single-electron charging is also observed for the series of alloy NCs, in which the Eg values of the alloy NCs enlarge as the temperature decreases, which is characteristic of semiconducting behavior.

Electronic Supplementary Material

Download File(s)
12274_2022_4445_MOESM1_ESM.pdf (716.5 KB)

References

1

Li, Y. W.; Zhou, M.; Song, Y. B.; Higaki, T.; Wang, H.; Jin, R. C. Double-helical assembly of heterodimeric nanoclusters into supercrystals. Nature 2021, 594, 380–384.

2

Negishi, Y.; Nakazaki, T.; Malola, S.; Takano, S.; Niihori, Y.; Kurashige, W.; Yamazoe, S.; Tsukuda, T.; Häkkinen, H. A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters. J. Am. Chem. Soc. 2015, 137, 1206–1212.

3

Hu, F.; Guan, Z. J.; Yang, G. Y.; Wang, J. Q.; Li, J. J.; Yuan, S. F.; Liang, G. J.; Wang, Q. M. Molecular gold nanocluster Au156 showing metallic electron dynamics. J. Am. Chem. Soc. 2021, 143, 17059–17067.

4

Shen, H.; Xiang, S. J.; Xu, Z.; Liu, C.; Li, X. H.; Sun, C. F.; Lin, S. C.; Teo, B. K.; Zheng, N. F. Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Res. 2020, 13, 1908–1911.

5

Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419–425.

6

Zhu, Y. F.; Qiu, X. Y.; Zhao, S. L.; Guo, J.; Zhang, X. F.; Zhao, W. S.; Shi, Y. N.; Tang, Z. Y. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928–1932.

7

Higaki, T.; Zhou, M.; He, G. Y.; House, S. D.; Sfeir, M. Y.; Yang, J. C.; Jin, R. C. Anomalous phonon relaxation in Au333(SR)79 nanoparticles with nascent plasmons. Proc. Natl. Acad. Sci. USA 2019, 116, 13215–13220.

8

Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501–507.

9

Liu, X.; Xu, W. W.; Huang, X. Y.; Wang, E. D.; Cai, X.; Zhao, Y.; Li, J.; Xiao, M.; Zhang, C. F.; Gao, Y. et al. De novo design of Au36(SR)24 nanoclusters. Nat. Commun. 2020, 11, 3349.

10

Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy clusters: Precise synthesis and mixing effects. Acc. Chem. Res. 2018, 51, 3114–3124.

11

Wang, S. X.; Li, Q.; Kang, X.; Zhu, M. Z. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. Acc. Chem. Res. 2018, 51, 2784–2792.

12

Li, Y. W.; Biswas, S.; Luo, T. Y.; Juarez-Mosqueda, R.; Taylor, M. G.; Mpourmpakis, G.; Rosi, N. L.; Hendrich, M. P.; Jin, R. C. Doping effect on the magnetism of thiolate-capped 25-atom alloy nanoclusters. Chem. Mater. 2020, 21, 9238–9244.

13

Wang, S. X.; Song, Y. B.; Jin, S.; Liu, X.; Zhang, J.; Pei, Y.; Meng, X. M.; Chen, M.; Li, P.; Zhu, M. Z. Metal exchange method using Au25 nanoclusters as templates for alloy nanoclusters with atomic precision. J. Am. Chem. Soc. 2015, 137, 4018–4021.

14

Ghosh, A.; Mohammed, O. F.; Bakr, O. M. Atomic-level doping of metal clusters. Acc. Chem. Res. 2018, 51, 3094–3103.

15

Fei, W. W.; Antonello, S.; Dainese, T.; Dolmella, A.; Lahtinen, M.; Rissanen, K.; Venzo, A.; Maran, F. Metal doping of Au25(SR)18- clusters: Insights and hindsights. J. Am. Chem. Soc. 2019, 141, 16033–16045.

16

Kwak, K.; Tang, Q.; Kim, M.; Jiang, D. E.; Lee, D. Interconversion between superatomic 6-electron and 8-electron configurations of M@Au24(SR)18 clusters (M = Pd, Pt). J. Am. Chem. Soc. 2015, 137, 10833–10840.

17

Yao, C. H.; Lin, Y. J.; Yuan, J. Y.; Liao, L. W.; Zhu, M.; Weng, L. H.; Yang, J. L.; Wu, Z. K. Mono-cadmium vs mono-mercury doping of Au25 nanoclusters. J. Am. Chem. Soc. 2015, 137, 15350–15353.

18

Negishi, Y.; Kurashige, W.; Niihori, Y.; Iwasa, T.; Nobusada, K. Isolation, structure, and stability of a dodecanethiolate-protected Pd1Au24 cluster. Phys. Chem. Chem. Phys. 2010, 12, 6219–6225.

19

Li, Q.; Lambright, K. J.; Taylor, M. G.; Kirschbaum, K.; Luo, T. Y.; Zhao, J.; Mpourmpakis, G.; Mokashi-Punekar, S.; Rosi, N. L.; Jin, R. Reconstructing the surface of gold nanoclusters by cadmium doping. J. Am. Chem. Soc. 2017, 139, 17779–17782.

20

Li, Y. W.; Luo, T. Y.; Zhou, M.; Song, Y. B.; Rosi, N. L.; Jin, R. C. A correlated series of Au/Ag nanoclusters revealing the evolutionary patterns of asymmetric Ag doping. J. Am. Chem. Soc. 2018, 140, 14235–14243.

21

Liu, C.; Ren, X. Q.; Lin, F.; Fu, X. M.; Lin, X. Z.; Li, T.; Sun, K. J.; Huang, J. H. Structure of the Au23–xAgx(S-Adm)15 nanocluster and its application for photocatalytic degradation of organic pollutants. Angew. Chem., Int. Ed. 2019, 58, 11335–11339.

22

Higaki, T.; Liu, C.; Morris, D. J.; He, G. Y.; Luo, T. Y.; Sfeir, M. Y.; Zhang, P.; Rosi, N. L.; Jin, R. C. Au130–xAgx nanoclusters with non-metallicity: A drum of silver-rich sites enclosed in a marks-decahedral cage of gold-rich sites. Angew. Chem., Int. Ed. 2019, 131, 18974–18978.

23

Yan, J. Z.; Malola, S.; Hu, C. Y.; Peng, J.; Dittrich, B.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells. Nat. Commun. 2018, 9, 3357.

24

Guan, Z. J.; Zeng, J. L.; Yuan, S. F.; Hu, F.; Lin, Y. M.; Wang, Q. M. Au57Ag53(C≡CPh)40Br12: A large nanocluster with C1 symmetry. Angew. Chem., Int. Ed. 2018, 57, 5703–5707.

25

Zeng, J. L.; Guan, Z. J.; Du, Y.; Nan, Z. A.; Lin, Y. M.; Wang, Q. M. Chloride-promoted formation of a bimetallic nanocluster Au80Ag30 and the total structure determination. J. Am. Chem. Soc. 2016, 138, 7848–7851.

26

Higaki, T.; Zhou, M.; Lambright, K. J.; Kirschbaum, K.; Sfeir, M. Y.; Jin, R. C. Sharp transition from nonmetallic Au246 to metallic Au279 with nascent surface plasmon resonance. J. Am. Chem. Soc. 2018, 140, 5691–5695.

27

Chaki, N. K.; Negishi, Y.; Tsunoyama, H.; Shichibu, Y.; Tsukuda, T. Ubiquitous 8 and 29 kDa gold: Alkanethiolate cluster compounds: Mass-spectrometric determination of molecular formulas and structural implications. J. Am. Chem. Soc. 2008, 130, 8608–8610.

28

Qian, H. F.; Jin, R. C. Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60. Nano Lett. 2009, 9, 4083–4087.

29

Schaaff, T. G.; Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L. Properties of a ubiquitous 29 kDa Au: SR cluster compound. J. Phys. Chem. B 2001, 105, 8785–8796.

30

Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Liu, S.; Xu, H.; Li, G. Pyridine as a trigger in transformation chemistry from Au144(SR)60 to aromatic thiolate-ligated gold clusters. Nanoscale 2020, 12, 4982–4987.

31

Dainese, T.; Agrachev, M.; Antonello, S.; Badocco, D.; Black, D. M.; Fortunelli, A.; Gascón, J. A.; Stener, M.; Venzo, A.; Whetten, R. L. et al. Atomically precise Au144(SR)60 nanoclusters (R = Et, Pr) are capped by 12 distinct ligand types of 5-fold equivalence and display gigantic diastereotopic effects. Chem. Sci. 2018, 9, 8796–8805.

32

Deng, S. Y.; Li, J.; Wang, P.; Pei, Y. Origin of the structural stability of cage-like Au144 clusters. Nanoscale 2021, 13, 18134–18139.

33

Yan, N.; Xia, N.; Liao, L. W.; Zhu, M.; Jin, F. M.; Jin, R. C.; Wu, Z. K. Unraveling the long-pursued Au144 structure by x-ray crystallography. Sci. Adv. 2018, 4, eaat7259.

34

Lei, Z.; Li, J. J.; Wan, X. K.; Zhang, W. H.; Wang, Q. M. Isolation and total structure determination of an all-alkynyl-protected gold nanocluster Au144. Angew. Chem., Int. Ed. 2018, 57, 8639–8643.

35

Yuan, X. T.; Malola, S.; Deng, G. C.; Chen, F. J.; Häkkinen, H.; Teo, B. K.; Zheng, L. S.; Zheng, N. F. Atomically precise alkynyl- and halide-protected AuAg nanoclusters Au78Ag66(C≡CPh)48Cl8 and Au74Ag60(C≡CPh)40Br12: The ligation effects of halides. Inorg. Chem. 2021, 60, 3529–3533.

36

Dass, A.; Stevenson, A.; Dubay, G. R.; Tracy, J. B.; Murray, R. W. Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18–x(L)x. J. Am. Chem. Soc. 2008, 130, 5940–5946.

37
Kumara, C. ; Dass, A. (AuAg)144(SR)60 alloy nanomolecules. Nanoscale 2011, 3, 3064–3067.https://doi.org/10.1039/c1nr10429b
38

Du, X. S.; Liu, Z. Y.; Higaki, T.; Zhou, M.; Jin, R. C. Understanding nascent plasmons and metallic bonding in atomically precise gold nanoclusters. Chem. Sci. 2022, 13, 1925–1932.

39

Malola, S.; Lehtovaara, L.; Häkkinen, H. TDDFT analysis of optical properties of thiol monolayer-protected gold and intermetallic silver-gold Au144(SR)60 and Au84Ag60(SR)60 clusters. J. Phys. Chem. C 2014, 118, 20002–20008.

40

Chen, S.; Higaki, T.; Ma, H. D.; Zhu, M. Z.; Jin, R. C.; Wang, G. L. Inhomogeneous quantized single-electron charging and electrochemical-optical insights on transition-sized atomically precise gold nanoclusters. ACS Nano 2020, 14, 16781–16790.

41

Zhou, M.; Song, Y. Origins of visible and near-infrared emissions in [Au25(SR)18] nanoclusters. J. Phys. Chem. Lett. 2021, 12, 1514–1519.

42

Zhou, M.; Higaki, T.; Hu, G. X.; Sfeir, M. Y.; Chen, Y. X.; Jiang, D. E.; Jin, R. C. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 2019, 364, 279–282.

43

Zhou, M.; Zeng, C. J.; Chen, Y. X.; Zhao, S.; Sfeir, M. Y.; Zhu, M. Z.; Jin, R. C. Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat. Commun. 2016, 7, 13240.

44

Zhou, M.; Higaki, T.; Li, Y. W.; Zeng, C. J.; Li, Q.; Sfeir, M. Y.; Jin, R. C. Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 2019, 141, 19754–19764.

45

Zheng, H. J.; Tofanelli, M. A.; Ackerson, C. J.; Knappenberger, K. L. Jr. Composition-dependent electronic energy relaxation dynamics of metal domains as revealed by bimetallic Au144–xAgx(SC8H9)60 monolayer-protected clusters. Phys. Chem. Chem. Phys. 2017, 19, 14471–14477.

46

Zhou, M.; Du, X. S.; Wang, H.; Jin, R. C. The critical number of gold atoms for a metallic state nanocluster: Resolving a decades-long question. ACS Nano 2021, 15, 13980–13992.

Nano Research
Pages 8573-8578
Cite this article:
Du X, Ma H, Zhang X, et al. Single-electron charging and ultrafast dynamics of bimetallic Au144−xAgx(PET)60 nanoclusters. Nano Research, 2022, 15(9): 8573-8578. https://doi.org/10.1007/s12274-022-4445-9
Topics:

954

Views

12

Crossref

10

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 09 March 2022
Revised: 17 April 2022
Accepted: 19 April 2022
Published: 25 June 2022
© Tsinghua University Press 2022
Return