Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Because of their moderate penetration power, β-rays (high-energy electrons) are a useful signal for evaluating the surface contamination of nuclear radiation. However, the development of β-ray scintillators, which convert the absorbed high-energy electrons into visible photons, is hindered by the limitations of materials selection. Herein, we report two highly luminescent zero-dimensional (0D) organic–inorganic lead-free metal halide hybrids, (C13H30N)2MnBr4 and (C19H34N)2MnBr4, as scintillators exhibiting efficient β-ray scintillation. These hybrid scintillators combine the superior properties of organic and inorganic components. For example, organic components that contain light elements C, H, and N enhance the capturing efficiency of β particles; isolated inorganic [MnBr4]2− tetrahedrons serve as highly localized emitting centers to emit intense radioluminescence (RL) under β-ray excitation. Both hybrids show a narrow-band green emission peaked at 518 nm with photoluminescence quantum efficiencies (PLQEs) of 81.3% for (C13H30N)2MnBr4 and 86.4% for (C19H34N)2MnBr4, respectively. To enable the solution processing of this promising metal halide hybrid, we successfully synthesized (C13H30N)2MnBr4 colloidal nanocrystals for the first time. Being excited by β-rays, (C13H30N)2MnBr4 scintillators show a linear response to β-ray dose rate over a broad range from 400 to 2,800 Gy·s−1, and also display robust radiation resistance that 80% of the initial RL intensity can be maintained after an ultrahigh accumulated radiation dose of 240 kGy. This work will open up a new route for the development of β-ray scintillators.
Chiang, C. S.; Shih, I. J.; Shueng, P. W.; Kao, M.; Zhang, L. W.; Chen, S. F.; Chen, M. H.; Liu, T. Y. Tumor cell-targeting radiotherapy in the treatment of glioblastoma multiforme using linear accelerators. Acta Biomater. 2021, 125, 300–311.
Pirker, L.; Krajnc, A. P.; Malec, J.; Radulovic, V.; Gradišek, A.; Jelen, A.; Remškar, M.; Mekjavič, I. B.; Kovač, J.; Mozetič, M. et al. Sterilization of polypropylene membranes of facepiece respirators by ionizing radiation. J. Membr. Sci. 2021, 619, 118756.
Yu, D. J.; Wang, P.; Cao, F.; Gu, Y.; Liu, J. X.; Han, Z. Y.; Huang, B.; Zou, Y. S.; Xu, X. B.; Zeng, H. B. Two-dimensional halide perovskite as beta-ray scintillator for nuclear radiation monitoring. Nat. Commun. 2020, 11, 3395.
Yamato, S.; Yamaji, A.; Kurosawa, S.; Yoshino, M.; Ohashi, Y.; Kamada, K.; Yokota, Y.; Yoshikawa, A. Crystal growth and luminescence properties of organic crystal scintillators for α-rays detection. Opt. Mater. 2019, 94, 58–63.
Chen, Q. S.; Wu, J.; Ou, X. Y.; Huang, B. L.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X. W.; Han, S. Y.; Liang, L. L.; Yi, Z. G. et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93.
Heo, J. H.; Shin, D. H.; Park, J. K.; Kim, D. H.; Lee, S. J.; Im, S. H. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 2018, 30, 1801743.
Lian, L. Y.; Wang, X.; Zhang, P.; Zhu, J. S.; Zhang, X. W.; Gao, J. B.; Wang, S.; Liang, G. J.; Zhang, D. L.; Gao, L. et al. Highly luminescent zero-dimensional organic copper halides for X-ray scintillation. J. Phys. Chem. Lett. 2021, 12, 6919–6926.
He, Q. Q.; Zhou, C. K.; Xu, L. J.; Lee, S.; Lin, X. S.; Neu, J.; Worku, M.; Chaaban, M.; Ma, B. W. Highly stable organic antimony halide crystals for X-ray scintillation. ACS Mater. Lett. 2020, 2, 633–638.
McCall, K. M.; Sakhatskyi, K.; Lehmann, E.; Walfort, B.; Losko, A. S.; Montanarella, F.; Bodnarchuk, M. I.; Krieg, F.; Kelestemur, Y.; Mannes, D. et al. Fast neutron imaging with semiconductor nanocrystal scintillators. ACS Nano 2020, 14, 14686–14697.
Weber, M. J. Inorganic scintillators: Today and tomorrow. J. Lumin. 2002, 100, 35–45.
Dujardin, C.; Auffray, E.; Bourret-Courchesne, E.; Dorenbos, P.; Lecoq, P.; Nikl, M.; Vasil'ev, A. N.; Yoshikawa, A.; Zhu, R. Y. Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 2018, 65, 1977–1997.
Yoshikawa, A.; Chani, V.; Nikl, M. Czochralski growth and properties of scintillating crystals. Acta Phys. Pol. A 2013, 124, 250–264.
Kobayashi, S.; Hayakawa, S. Quenching effects of several compounds in naphthalene scintillators. Jpn. J. Appl. Phys. 1965, 4, 181–189.
Qin, Y. Y.; She, P. F.; Huang, X. M.; Huang, W.; Zhao, Q. Luminescent manganese(II) complexes: Synthesis, properties and optoelectronic applications. Coord. Chem. Rev. 2020, 416, 213331.
Morad, V.; Cherniukh, I.; Pöttschacher, L.; Shynkarenko, Y.; Yakunin, S.; Kovalenko, M. V. Manganese(II) in tetrahedral halide environment: Factors governing bright green luminescence. Chem. Mater. 2019, 31, 10161–10169.
Zhou, G. J.; Liu, Z. Y.; Huang, J. L.; Molokeev, M. S.; Xiao, Z. W.; Ma, C. G.; Xia, Z. G. Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: A case study of (C10H16N)2Zn1−xMnxBr4 solid solutions. J. Phys. Chem. Lett. 2020, 11, 5956–5962.
Ma, Y. Y.; Song, Y. R.; Xu, W. J.; Zhong, Q. Q.; Fu, H. Q.; Liu, X. L.; Yue, C. Y.; Lei, X. W. Solvent-free mechanochemical syntheses of microscale lead-free hybrid manganese halides as efficient green light phosphors. J. Mater. Chem. C 2021, 9, 9952–9961.
Hu, G. C.; Xu, B.; Wang, A. F.; Guo, Y.; Wu, J. J.; Muhammad, F.; Meng, W.; Wang, C. Y.; Sui, S.; Liu, Y. et al. Stable and bright pyridine manganese halides for efficient white light-emitting diodes. Adv. Funct. Mater. 2021, 31, 2011191.
Jiang, T. M.; Ma, W. B.; Zhang, H.; Tian, Y.; Lin, G.; Xiao, W. G.; Yu, X.; Qiu, J. B.; Xu, X. H.; Yang, Y. et al. Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications. Adv. Funct. Mater. 2021, 31, 2009973.
Xu, L. J.; Lin, X. S.; He, Q. Q.; Worku, M.; Ma, B. W. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nat. Commun. 2020, 11, 4329.
Lian, L. Y.; Zheng, M. Y.; Zhang, P.; Zheng, Z.; Du, K.; Lei, W.; Gao, J. B.; Niu, G. D.; Zhang, D. L.; Zhai, T. Y. et al. Photophysics in Cs3Cu2X5 (X = Cl, Br, or I): Highly luminescent self-trapped excitons from local structure symmetrization. Chem. Mater. 2020, 32, 3462–3468.
Lian, L. Y.; Zheng, M. Y.; Zhang, W. Z.; Yin, L. X.; Du, X. Y.; Zhang, P.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Adv. Sci. 2020, 7, 2000195.
Lian, L. Y.; Zhang, P.; Liang, G. J.; Wang, S.; Wang, X.; Wang, Y.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient dual-band white-light emission with high color rendering from zero-dimensional organic copper iodide. ACS Appl. Mater. Interfaces 2021, 13, 22749–22756.
Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. , Int. Ed. 2016, 55, 13887–13892.
Hajagos, T. J.; Liu, C.; Cherepy, N. J.; Pei, Q. B. High-Z sensitized plastic scintillators: A review. Adv. Mater. 2018, 30, 1706956.
Klitting, O.; Sguerra, F.; Bertrand, G. H. V.; Villemot, V.; Hamel, M. Preparation and characterization of cross-linked plastic scintillators. Polymer 2021, 213, 123214.
Zhu, J.; Deng, C.; Jiang, H. M.; Zheng, Z. L.; Gong, R.; Bi, Y. T.; Zhang, L.; Lin, R. X. The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2016, 835, 136–141.
Peralta, L. Temperature dependence of plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 883, 20–23.
Zorn, C. Studies in the radiation resistance of plastic scintillators review and prospects. IEEE Trans. Nucl. Sci. 1990, 37, 504–512.