AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interface structure and strain controlled Pt nanocrystals grown at side facet of MoS2 with critical size

Yuchen Zhu1Yinghui Sun1Hongzhou Zhang2Yang He1Wei Liu3Rongming Wang1( )
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing 100083, China
School of Physics, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
Division of Energy Research Resources, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Three typical growth sites of Pt nanocrystals on the MoS2 side edges (namely pit, step, and terrace) with the same dominant orientation relation were studied. The findings demonstrate that volumetric defects on side surfaces of MoS2 regulate the sizes and interfacial strains of Pt nanocrystals.

Abstract

The heterostructure of transition metal nanocrystal on two-dimensional (2D) materials exhibits unique physical and chemical properties through various interfacial interactions. It has been established that the atomic structure and strain in the vicinity of the interface determine the band structure and phonon modes of the nanocrystal, regulating the optical and electrical properties of such heterostructures. Hence, metal–support interfacial engineering is a demonstrated approach to acquiring desired properties of the nanocrystals. However, a fundamental understanding of the interfacial structures remains elusive and precise control of the interactions has yet achieved. Herein, we explore the regulation of interface on MoS2 supported Pt nanocrystals which were prepared by reducing ultrasonic dispersed potassium chloroplatinate. The Pt-MoS2 heterostructure interface was systematically studied by aberration corrected transmission electron microscopy. Three types of Pt-MoS2 interfaces with distinct atomic configurations were identified. The strain within the Pt nanocrystals is sensitive to the atomic configuration of the supporting MoS2, which regulates the size of the Pt nanocrystals. These results provide insights on tuning of nanocrystal strain, paving the way for precise control of 2D semiconductor heterostructures.

Electronic Supplementary Material

Download File(s)
12274_2022_4449_MOESM1_ESM.pdf (3.5 MB)

References

1

Zhang, X.; Grajal, J.; Vazquez-Roy, J. L.; Radhakrishna, U.; Wang, X. X.; Chern, W.; Zhou, L.; Lin, Y. X.; Shen, P. C.; Ji, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 2019, 566, 368–372.

2

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

3

He, Y.; Liu, J. C.; Luo, L. L.; Wang, Y. G.; Zhu, J. F.; Du, Y. G.; Li, J.; Mao, S. X.; Wang, C. M. Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. Proc. Natl. Acad. Sci. USA 2018, 115, 7700–7705.

4

Zhang, Z. H.; Xu, X. Z.; Qiu, L.; Wang, S. X.; Wu, T. W.; Ding, F.; Peng, H. L.; Liu, K. H. The way towards ultrafast growth of single-crystal graphene on copper. Adv. Sci. 2017, 4, 1700087.

5

Tan, C. W.; Tang, M.; Wu, J. X.; Liu, Y. N.; Li, T. R.; Liang, Y.; Deng, B.; Tan, Z. J.; Tu, T.; Zhang, Y. C. et al. Wafer-scale growth of single-crystal 2D semiconductor on perovskite oxides for high-performance transistors. Nano Lett. 2019, 19, 2148–2153.

6

Shan, A. X.; Teng, X. A.; Zhang, Y.; Zhang, P. F.; Xu, Y. Y.; Liu, C. R.; Li, H.; Ye, H. Y.; Wang, R. M. Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction. Nano Energy 2022, 94, 106913.

7
Yuan, W. T. ; Zhu, B. E. ; Fang, K. ; Li, X. Y. ; Hansen, T. W. ; Ou, Y. ; Yang, H. S. ; Wagner, J. B. ; Gao, Y. ; Wang, Y. et al. In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation. Science 2021, 371, 517–521.https://doi.org/10.1126/science.abe3558
8

Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 2014, 136, 6693–6697.

9

Xu, B.; Li, H. Y.; Yang, H.; Xiang, W. T.; Zhou, G.; Wu, Y.; Wang, X. Colloidal 2D-0D lateral nanoheterostructures: A case study of site-selective growth of cds nanodots onto Bi2Se3 nanosheets. Nano Lett. 2015, 15, 4200–4205.

10

Zhu, L. J.; Yang, P. F.; Huan, Y. H.; Pan, S. Y.; Zhang, Z. Q.; Cui, F. F.; Shi, Y. P.; Jiang, S. L.; Xie, C. Y.; Hong, M. et al. Scalable salt-templated directed synthesis of high-quality MoS2 nanosheets powders towards energetic and environmental applications. Nano Res. 2020, 13, 3098–3104.

11

Guo, Y.; Sun, Y.; Tang, A.; Wang, C. H.; Zhao, Y. Q.; Bai, M. M.; Xu, S. T.; Xu, Z. Q.; Tang, T.; Wang, S. et al. Erratum to: Field-effect at electrical contacts to two-dimensional materials. Nano Res. 2021, 14, 4903.

12

Moe, Y. A.; Sun, Y. H.; Ye, H. Y.; Liu, K.; Wang, R. M. Probing evolution of local strain at MoS2-metal boundaries by surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2018, 10, 40246–40254.

13

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

14

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

15

Wu, J.; Liu, Y. P.; Liu, Y.; Cai, Y. Q.; Zhao, Y. S.; Ng, H. K.; Watanabe, K.; Taniguchi, T.; Zhang, G.; Qiu, C. W. et al. Large enhancement of thermoelectric performance in MoS2/h-BN heterostructure due to vacancy-induced band hybridization. Proc. Natl. Acad. Sci. USA 2020, 117, 13929–13936.

16

Marega, G. M.; Zhao, Y. F.; Avsar, A.; Wang, Z. Y.; Tripathi, M.; Radenovic, A.; Kis, A. Logic-in-memory based on an atomically thin semiconductor. Nature 2020, 587, 72–77.

17

Feng, J. D.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A. Single-layer MoS2 nanopores as nanopower generators. Nature 2016, 536, 197–200.

18

Yang, X.; Liu, W. Q.; Xiong, M.; Zhang, Y. Y.; Liang, T.; Yang, J. T.; Xu, M. S.; Ye, J.; Chen, H. Z. Au nanoparticles on ultrathin MoS2 sheets for plasmonic organic solar cells. J. Mater. Chem. A 2014, 2, 14798–14806.

19

Shang, B.; Cui, X. Q.; Jiao, L.; Qi, K.; Wang, Y. W.; Fan, J. C.; Yue, Y. Y.; Wang, H. Y.; Bao, Q. L.; Fan, X. F. et al. Lattice-mismatch-induced ultrastable 1T-phase MoS2-Pd/Au for plasmon-enhanced hydrogen evolution. Nano Lett. 2019, 19, 2758–2764.

20

Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

21

Wu, F.; Li, Q.; Wang, P.; Xia, H.; Wang, Z.; Wang, Y.; Luo, M.; Chen, L.; Chen, F. S.; Miao, J. S. et al. High efficiency and fast van der waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 2019, 10, 4663.

22

Singha, S. S.; Mondal, S.; Bhattacharya, T. S.; Das, L.; Sen, K.; Satpati, B.; Das, K.; Singha, A. Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing. Biosens. Bioelectron. 2018, 119, 10–17.

23

Liu, B. X.; Sun, Y. H.; Wu, Y. H.; Liu, K.; Ye, H. Y.; Li, F. T.; Zhang, L. M.; Jiang, Y.; Wang, R. M. Enhanced photoresponse of TiO2/MoS2 heterostructure phototransistors by the coupling of interface charge transfer and photogating. Nano Res. 2021, 14, 982–991.

24

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

25

Gupta, S.; Rortais, F.; Ohshima, R.; Ando, Y.; Endo, T.; Miyata, Y.; Shiraishi, M. Approaching barrier-free contacts to monolayer MoS2 employing [Co/Pt] multilayer electrodes. NPG Asia Mater. 2021, 13, 13.

26

Wu, C.; Zhang, J.; Tong, X.; Yu, P.; Xu, J. Y.; Wu, J.; Wang, Z. M.; Lou, J.; Chueh, Y. L. A critical review on enhancement of photocatalytic hydrogen production by molybdenum disulfide: From growth to interfacial activities. Small 2019, 15, 1900578.

27

Fu, H.; Ge, B. C.; Xin, Y. C.; Wu, R. Z.; Fernandez, C.; Huang, J. Y.; Peng, Q. M. Achieving high strength and ductility in magnesium alloys via densely hierarchical double contraction nanotwins. Nano Lett. 2017, 17, 6117–6124.

28

Guo, Y. F.; Lin, Y. X.; Xie, K. C.; Yuan, B.; Zhu, J. D.; Shen, P. C.; Lu, A. Y.; Su, C.; Shi, E. Z.; Zhang, K. Y. et al. Designing artificial two-dimensional landscapes via atomic-layer substitution. Proc. Natl. Acad. Sci. USA 2021, 118, e2106124118.

29

Wang, R. M. The dynamics of the peel. Nat. Catal. 2020, 3, 333–334.

30

Xu, B.; He, P. L.; Liu, H. L.; Wang, P. P.; Zhou, G.; Wang, X. A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew. Chem. , Int. Ed. 2014, 53, 2339–2343.

31

Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

32

Dong, C. Y.; Li, Y. L.; Cheng, D. Y.; Zhang, M. T.; Liu, J. J.; Wang, Y. G.; Xiao, D. Q.; Ma, D. Supported metal clusters: Fabrication and application in heterogeneous catalysis. ACS Catal. 2020, 10, 11011–11045.

33

Li, Y. S.; Li, X. M.; Du, C. C.; Sun, H. M.; Zhang, Y.; Liu, Q. N.; Yang, T. T.; Zhao, J.; Delmas, C.; Harris, S. J. et al. Degradation by kinking in layered cathode materials. ACS Energy Lett. 2021, 6, 3960–3969.

34

Chen, S. Y.; Li, S. D.; You, R. Y.; Guo, Z. Y.; Wang, F.; Li, G. X.; Yuan, W. T.; Zhu, B. E.; Gao, Y.; Zhang, Z. et al. Elucidation of active sites for CH4 catalytic oxidation over Pd/CeO2 via tailoring metal–support interactions. ACS Catal. 2021, 11, 5666–5677.

35

Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 1998, 81, 2819–2822.

36

Sun, Y. H.; Zhao, H. F.; Zhou, D.; Zhu, Y. C.; Ye, H. Y.; Moe, Y. A.; Wang, R. M. Direct observation of epitaxial alignment of Au on MoS2 at atomic resolution. Nano Res. 2019, 12, 947–954.

37

Chen, X. J.; Chen, D.; Guo, X. Y.; Wang, R. M.; Zhang, H. Z. Facile growth of caterpillar-like NiCO2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 18774–18781.

38

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

39
Wang, S. S. ; Sawada, H. ; Chen, Q. ; Han, G. G. D. ; Allen, C. ; Kirkland, A. I. ; Warner, J. H. In situ atomic-scale studies of the formation of epitaxial Pt nanocrystals on monolayer molybdenum disulfide. ACS Nano 2017, 11, 9057–9067.https://doi.org/10.1021/acsnano.7b03648
40

Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T′-MoS2-and 1T′-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638–643.

41
Ramos, M. ; Ferrer, D. ; Martinez-Soto, E. ; Lopez-Lippmann, H. ; Torres, B. ; Berhault, G. ; Chianelli, R. R. In-situ HRTEM study of the reactive carbide phase of Co/MoS2 catalyst. Ultramicroscopy 2013, 127, 64–69.https://doi.org/10.1016/j.ultramic.2012.07.012
42

Wang, S. S.; Sawada, H.; Han, X. Y.; Zhou, S.; Li, S.; Guo, Z. X.; Kirkland, A. I.; Warner, J. H. Preferential Pt nanocluster seeding at grain boundary dislocations in polycrystalline monolayer MoS2. ACS Nano 2018, 12, 5626–5636.

43

Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. N.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.

44

Peimyoo, N.; Deilmann, T.; Withers, F.; Escolar, J.; Nutting, D.; Taniguchi, T.; Watanabe, K.; Taghizadeh, A.; Craciun, M. F.; Thygesen, K. S. et al. Electrical tuning of optically active interlayer excitons in bilayer MoS2. Nat. Nanotechnol. 2021, 16, 888–893.

45

Guo, H. L.; Zhang, X.; Lu, G. Moiré excitons in defective van der Waals heterostructures. Proc. Natl. Acad. Sci. USA 2021, 118, e2105468118.

46

Li, S. S.; Lin, Y. C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z. H.; Shen, Y. D.; Tang, D. M.; Wang, J. Y.; Zhang, Q. et al. Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 2018, 17, 535–542.

47

Manzeli, S.; Dumcenco, D.; Migliato Marega, G.; Kis, A. Self-sensing, tunable monolayer MoS2 nanoelectromechanical resonators. Nat. Commun. 2019, 10, 4831.

48

Lin, J. H.; Cretu, O.; Zhou, W.; Suenaga, K.; Prasai, D.; Bolotin, K. I.; Cuong, N. T.; Otani, M.; Okada, S.; Lupini, A. R. et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nanotechnol. 2014, 9, 436–442.

49

Park, J.; Yoo, G.; Heo, J. CdSe/ZnS quantum dot encapsulated MoS2 phototransistor for enhanced radiation hardness. Sci. Rep. 2019, 9, 1411.

50

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

51

Lauritsen, J. V.; Kibsgaard, J.; Helveg, S.; Topsøe, H.; Clausen, B. S.; Lægsgaard, E.; Besenbacher, F. Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2007, 2, 53–58.

52

Lauritsen, J. V.; Besenbacher, F. Model catalyst surfaces investigated by scanning tunneling microscopy. Adv. Catal. 2006, 50, 97–147.

53

Salazar, N.; Rangarajan, S.; Rodríguez-Fernández, J.; Mavrikakis, M.; Lauritsen, J. V. Site-dependent reactivity of MoS2 nanoparticles in hydrodesulfurization of thiophene. Nat. Commun. 2020, 11, 4369.

54

Desgranges, C.; Delhommelle, J. Molecular simulation of the nucleation and growth of gold nanoparticles. J. Phys. Chem. C 2009, 113, 3607–3611.

55

Dachraoui, W.; Henninen, T. R.; Keller, D.; Erni, R. Multi-step atomic mechanism of platinum nanocrystals nucleation and growth revealed by in-situ liquid cell STEM. Sci. Rep. 2021, 11, 23965.

56

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

57

Xie, C. L.; Niu, Z. Q.; Kim, D.; Li, M. F.; Yang, P. D. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2020, 120, 1184–1249.

58

De Backer, A.; van den Bos, K. H. W.; Van den Broek, W.; Sijbers, J.; Van Aert, S. StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images. Ultramicroscopy 2016, 171, 104–116.

59

Wang, R. M.; Dmitrieva, O.; Farle, M.; Dumpich, G.; Ye, H. Q.; Poppa, H.; Kilaas, R.; Kisielowski, C. Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys. Rev. Lett. 2008, 100, 017205.

60

Wang, R. M.; Dmitrieva, O.; Farle, M.; Dumpich, G.; Acet, M.; Mejia-Rosales, S.; Perez-Tijerina, E.; Yacaman, M. J.; Kisielowski, C. FePt icosahedra with magnetic cores and catalytic shells. J. Phys. Chem. C 2009, 113, 4395–4400.

61

Wang, L.; Teng, J.; Wu, Y.; Zou, J.; Yu, G.; Zhang, Z.; Han, X. Size dependence of dislocation activities and independence on theoretical elastic strain limit in Pt nanocrystals revealed by atomic-resolution in situ investigation. Mater. Today Nano 2018, 2, 1–6.

Nano Research
Pages 8493-8501
Cite this article:
Zhu Y, Sun Y, Zhang H, et al. Interface structure and strain controlled Pt nanocrystals grown at side facet of MoS2 with critical size. Nano Research, 2022, 15(9): 8493-8501. https://doi.org/10.1007/s12274-022-4449-5
Topics:

1109

Views

12

Crossref

14

Web of Science

11

Scopus

2

CSCD

Altmetrics

Received: 17 March 2022
Revised: 12 April 2022
Accepted: 20 April 2022
Published: 31 May 2022
© Tsinghua University Press 2022, corrected publication 2022
Return