AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Artificial “honeycomb-honey” decorated with non-noble plasmonic nanoparticles for superior solar capture and thermal energy storage

Haolei Wang1Xianglei Liu1,2( )Qingyang Luo1Haichen Yao1Qiao Xu1Yang Tian1Jianguo Wang1Yimin Xuan1,2
School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Key Laboratory of Thermal Management and Energy Utilization of Aviation Vehicles, Ministry of Industry and Information Technology, Nanjing 210016, China
Show Author Information

Graphical Abstract

Inspired by how honeybees store honey, artificial “honeycomb-honey” is fabricated for excellent solar and thermal energy storage capacity based on TiN nanoparticles decorated porous AlN skeletons-phase change materials (PCMs) composites.

Abstract

Phase change materials (PCMs) are popular solutions to tackle the unbalance of thermal energy supply and demand, but suffer from low thermal conductivity and leakage problems. Inspired by how honeybees store honey, we propose artificial “honeycomb-honey” for excellent solar and thermal energy storage capacity based on TiN nanoparticles decorated porous AlN skeletons-PCMs composites. The thermal conductivity of composites achieves 21.58 W/(m·K) at AlN loading of 20 vol.%, superior to the state-of-the-art ceramic-based composites. The charging/discharging time is reduced to about half of pure PCMs with shape-stability and thermal reliability well maintained over 500 melting/freezing cycles. The underlying mechanism can be attributed to the combination of single-crystal AlN whiskers with few crystal defects and reduced phonon scattering, as well as vertically arranged three-dimantional (3D) heat conduction channels. A rapid and efficient solar thermal storage is also demonstrated with solar thermal storage efficiency achieving a high value of 92.9% without employing additional spectrum selective coatings. This is benefited from high thermal conductivity and full-spectrum solar absorptance of up to 95% induced by plasmonic resonances of TiN nanoparticles. In addition, by embedding LiNO3-NaCl eutectics, the phase change enthalpy of composites reaches as high as 208 kJ/kg, making high energy storage density and fast energy storage rate compatible. This work offers new routes to achieve rapid, efficient, stable, and compact solar capture and thermal energy storage.

Electronic Supplementary Material

Download File(s)
12274_2022_4450_MOESM1_ESM.pdf (2.3 MB)

References

1

Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–487.

2

Ma, J. H.; Ma, T.; Cheng, J.; Zhang, J. Y. 3D printable, recyclable and adjustable comb/bottlebrush phase change polysiloxane networks toward sustainable thermal energy storage. Energy Storage Mater. 2021, 39, 294–304.

3

Xu, J. X.; Chao, J. W.; Li, T. X.; Yan, T. S.; Wu, S.; Wu, M. Q.; Zhao, B. C.; Wang, R. Z. Near-zero-energy smart battery thermal management enabled by sorption energy harvesting from air. ACS Cent. Sci. 2020, 6, 1542–1554.

4

Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; Del Pino, A. P.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655–2694.

5

Wang, Z. Y.; Tong, Z.; Ye, Q. X.; Hu, H.; Nie, X.; Yan, C.; Shang, W.; Song, C. Y.; Wu, J. B.; Wang, J. et al. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage. Nat. Commun 2017, 8, 1478.

6

Qiu, L.; Ouyang, Y. X.; Feng, Y. H.; Zhang, X. X. Review on micro/nano phase change materials for solar thermal applications. Renewable Energy 2019, 140, 513–538.

7

Ding, W. J.; Bauer, T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants. Engineering 2021, 7, 334–347.

8

Tian, Y.; Liu, X. L.; Zheng, H. B.; Xu, Q.; Zhu, Z. H.; Luo, Q. Y.; Song, C.; Gao, K.; Yao, H. C.; Dang, C. Z. et al. Artificial mitochondrion for fast latent heat storage: Experimental study and lattice Boltzmann simulation. Energy 2022, 245, 123296.

9

Wang, F. Q.; Dong, Y.; Li, Y.; Xu, J.; Zhang, G. L. Numerical study on the thermal performance of packed-bed latent heat thermal energy storage system with biomimetic alveoli structure capsule. Sci. China Technol. Sci. 2021, 64, 1544–1554.

10

Sun, B. Z.; Liu, Z. Z.; Ji, X.; Gao, L.; Che, D. Y. Thermal energy storage characteristics of packed bed encapsulating spherical capsules with composite phase change materials. Appl. Therm. Eng. 2022, 201, 117659.

11

Ghalambaz, M.; Mehryan, S. A. M.; Veismoradi, A.; Mahdavi, M.; Zahmatkesh, I.; Kazemi, Z.; Younis, O.; Ghalambaz, M.; Chamkha, A. J. Melting process of the nano-enhanced phase change material (NePCM) in an optimized design of shell and tube thermal energy storage (TES): Taguchi optimization approach. Appl. Therm. Eng. 2021, 193, 116945.

12

Fang, G. H.; Zhang, W. T.; Yu, M. H.; Meng, K. K.; Tan, X. Experimental investigation of high performance composite phase change materials based on sodium acetate trihydrate for solar thermal energy storage. Sol. Energy Mater. Sol. Cells 2022, 234, 111418.

13

Liu, H. B.; Zhao, C. Y. Effect of radial porosity oscillation on the thermal performance of packed bed latent heat storage. Engineering 2021, 7, 515–525.

14

Aftab, W.; Mahmood, A.; Guo, W. H.; Yousaf, M.; Tabassum, H.; Huang, X. Y.; Liang, Z. B.; Cao, A. Y.; Zou, R. Q. Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater. 2019, 20, 401–409.

15

Yuan, K. J.; Shi, J. M.; Aftab, W.; Qin, M. L.; Usman, A.; Zhou, F.; Lv, Y.; Gao, S.; Zou, R. Q. Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization. Adv. Funct. Mater. 2020, 30, 1904228.

16

Feng, D. L.; Feng, Y. H.; Qiu, L.; Li, P.; Zang, Y. Y.; Zou, H. Y.; Yu, Z. P.; Zhang, X. X. Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation. Renew. Sustain. Energy Rev. 2019, 109, 578–605.

17

Hou, X.; Chen, Y. P.; Lv, L.; Dai, W.; Zhao, S.; Wang, Z. W.; Fu, L.; Lin, C. T.; Jiang, N.; Yu, J. H. High-thermal-transport-channel construction within flexible composites via the welding of boron nitride nanosheets. ACS Appl. Nano Mater. 2019, 2, 360–368.

18

Wu, S.; Li, T. X.; Wu, M. Q.; Xu, J. X.; Chao, J. W.; Hu, Y. H.; Yan, T. S.; Li, Q. Y.; Wang, R. Z. Dual-functional aligned and interconnected graphite nanoplatelet networks for accelerating solar thermal energy harvesting and storage within phase change materials. ACS Appl. Mater. Interfaces 2021, 13, 19200–19210.

19

Biercuk, M. J.; Llaguno, M. C.; Radosavljevic, M.; Hyun, J. K.; Johnson, A. T.; Fischer, J. E. Carbon nanotube composites for thermal management. Appl. Phys. Lett. 2002, 80, 2767–2769.

20

Chu, K.; Guo, H.; Jia, C. C.; Yin, F. Z.; Zhang, X. M.; Liang, X. B.; Chen, H. Thermal properties of carbon nanotube-copper composites for thermal management applications. Nanoscale Res. Lett. 2010, 5, 868–874.

21

Kaul, P. B.; Bifano, M. F. P.; Prakash, V. Multifunctional carbon nanotube-epoxy composites for thermal energy management. J. Compos. Mater. 2013, 47, 77–95.

22

Qi, G. Q.; Yang, J.; Bao, R. Y.; Xia, D. Y.; Cao, M.; Yang, W.; Yang, M. B.; Wei, D. C. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 2017, 10, 802–813.

23

Qu, Y.; Wang, S.; Zhou, D.; Tian, Y. Experimental study on thermal conductivity of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives. Renewable Energy 2020, 146, 2637–2645.

24

Ji, H. X.; Sellan, D. P.; Pettes, M. T.; Kong, X. H.; Ji, J. Y.; Shi, L.; Ruoff, R. S. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 2014, 7, 1185–1192.

25

Chen, W. C.; Liang, X. H.; Wang, S. F.; Ding, Y. F.; Gao, X. N.; Zhang, Z. G.; Fang, Y. T. SiO2 hydrophilic modification of expanded graphite to fabricate form-stable ternary nitrate composite room temperature phase change material for thermal energy storage. Chem. Eng. J. 2021, 413, 127549.

26

Zou, T.; Fu, W. W.; Liang, X. H.; Wang, S. F.; Gao, X. N.; Zhang, Z. G.; Fang, Y. T. Hydrophilic modification of expanded graphite to develop form-stable composite phase change material based on modified CaCl2·6H2O. Energy 2020, 190, 116473.

27

Tian, Z. L.; Sun, J. J.; Wang, S. G.; Zeng, X. L.; Zhou, S.; Bai, S. L.; Zhao, N.; Wong, C. P. A thermal interface material based on foam-templated three-dimensional hierarchical porous boron nitride. J. Mater. Chem. A 2018, 6, 17540–17547.

28
Zhang, L.; Zhou, K. C.; Wei, Q. P.; Ma, L.; Ye, W. T.; Li, H. C.; Zhou, B.; Yu, Z. M.; Lin, C. T.; Luo, J. T. et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage. Appl.Energy 2019, 233–234, 208–219.
29

Wu, H. Y.; Li, S. T.; Shao, Y. W.; Jin, X. Z.; Qi, X. D.; Yang, J. H.; Zhou, Z. W.; Wang, Y. Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability. Chem. Eng. J. 2020, 379, 122373.

30

Jian, Y.; Wang, D. M.; Huang, M. Z.; Jia, H. L.; Sun, J. H.; Song, X. K.; Guan, M. Y. Facile synthesis of Ni(OH)2/carbon nanofiber composites for improving NiZn battery cycling life. ACS Sustainable Chem. Eng. 2017, 5, 6827–6834.

31

Mehrali, M.; Latibari, S. T.; Mehrali, M.; Metselaar, H. S. C.; Silakhori, M. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers. Manag. 2013, 67, 275–282.

32

Su, D. Q.; Huang, M.; Zhang, J. H.; Guo, X. M.; Chen, J. L.; Xue, Y. C.; Yuan, A. H.; Kong, Q. H. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020, 13, 2862–2868.

33

Luo, Q. Y.; Liu, X. L.; Wang, H. L.; Xu, Q.; Tian, Y.; Liang, T.; Liu, Q. B.; Liu, Z.; Yang, X. H.; Xuan, Y. M. et al. Synergetic enhancement of heat storage density and heat transport ability of phase change materials inlaid in 3D hierarchical ceramics. Appl. Energy 2022, 306, 117995.

34

Liu, X. L.; Song, Y. N.; Xu, Q.; Luo, Q. Y.; Tian, Y.; Dang, C. Z.; Wang, H. L.; Chen, M.; Xuan, Y. M.; Li, Y. L. et al. Nacre-like ceramics-based phase change composites for concurrent efficient solar-to-thermal conversion and rapid energy storage. Sol. Energy Mater. Sol. Cells 2021, 230, 111240.

35

Xu, Q.; Liu, X. L.; Luo, Q. Y.; Tian, Y.; Dang, C. Z.; Yao, H. C.; Song, C.; Xuan, Y. M.; Zhao, J. M.; Ding, Y. L. Loofah-derived eco-friendly SiC ceramics for high-performance sunlight capture, thermal transport, and energy storage. Energy Storage Mater. 2022, 45, 786–795.

36

Xu, Q.; Liu, X.; Luo, Q.; Song, Y.; Wang, H.; Chen, M.; Xuan, Y.; Li, Y.; Ding, Y. Bifunctional biomorphic SiC ceramics embedded molten salts for ultrafast thermal and solar energy storage. Mater. Today Energy 2021, 21, 100764.

37

Liu, X. L.; Wang, H. L.; Xu, Q.; Luo, Q. Y.; Song, Y. N.; Tian, Y.; Chen, M.; Xuan, Y. M.; Jin, Y.; Jia, Y. X. et al. High thermal conductivity and high energy density compatible latent heat thermal energy storage enabled by porous AlN ceramics composites. Int. J. Heat Mass Transf. 2021, 175, 121405.

38

Yang, J.; Zhang, E. W.; Li, X. F.; Zhang, Y. T.; Qu, J.; Yu, Z. Z. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 2016, 98, 50–57.

39

Xue, F.; Lu, Y.; Qi, X. D.; Yang, J. H.; Wang, Y. Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chem. Eng. J. 2019, 365, 20–29.

40

Mehrali, M.; Latibari, S. T.; Mehrali, M.; Mahlia, T. M. I.; Metselaar, H. S. C.; Naghavi, M. S.; Sadeghinezhad, E.; Akhiani, A. R. Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material. Appl. Therm. Eng. 2013, 61, 633–640.

41

Choi, H. J.; Yang, T. Y.; Yoon, S. Y.; Kim, B. K.; Park, H. C. Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Mater. Chem. Phys. 2012, 133, 16–20.

42

Jackson, T. B.; Virkar, A. V.; More, K. L.; Dinwiddie, R. B. Jr.; Cutler, R. A. High-thermal-conductivity aluminum nitride ceramics: The effect of thermodynamic, kinetic, and microstructural factors. J. Am. Ceram. Soc. 1997, 80, 1421–1435.

43

Slack, G. A. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids. 1973, 34, 321–335.

44
Kittel, C. Introduction to Solid State Physics; 5th ed. John Wiley & Sons: New York, 1976.
45

Harris, J. H.; Youngman, R. A.; Teller, R. G. On the nature of the oxygen-related defect in aluminum nitride. J. Mater. Res. 1990, 5, 1763–1773.

46

Zhong, Y. J.; Zhou, M.; Huang, F. Q.; Lin, T. Q.; Wan, D. Y. Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Sol. Energy Mater. Sol. Cells 2013, 113, 195–200.

47

Nomura, T.; Tabuchi, K.; Zhu, C. Y.; Sheng, N.; Wang, S. F.; Akiyama, T. High thermal conductivity phase change composite with percolating carbon fiber network. Appl. Energy 2015, 154, 678–685.

48

Karthik, M.; Faik, A.; Blanco-Rodriguez, P.; Rodríguez-Aseguinolaza, J.; D’Aguanno, B. Preparation of erythritol-graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications. Carbon 2015, 94, 266–276.

49

Fethi, A.; Mohamed, L.; Mustapha, K.; Ameurtarek, B.; Sassi, B. N. Investigation of a graphite/paraffin phase change composite. Int. J. Therm. Sci. 2015, 88, 128–135.

50

Giménez, P.; Jové, A.; Prieto, C.; Fereres, S. Effect of an increased thermal contact resistance in a salt PCM-graphite foam composite TES system. Renewable Energy 2017, 106, 321–334.

51

Singh, D.; Kim, T.; Zhao, W. H.; Yu, W. H.; France, D. M. Development of graphite foam infiltrated with MgCl2 for a latent heat based thermal energy storage (LHTES) system. Renewable Energy 2016, 94, 660–667.

52

Azeem, S.; Zain-ul-Abdein, M. Investigation of thermal conductivity enhancement in bakelite-graphite particulate filled polymeric composite. Int. J. Eng. Sci. 2012, 52, 30–40.

53

Oya, T.; Nomura, T.; Tsubota, M.; Okinaka, N.; Akiyama, T. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl. Therm. Eng. 2013, 61, 825–828.

54

Yang, J.; Tang, L. S.; Bai, L. L.; Bao, R. Y.; Liu, Z. Y.; Xie, B. H.; Yang, M. B.; Yang, W. Photodriven shape-stabilized phase change materials with optimized thermal conductivity by tailoring the microstructure of hierarchically ordered hybrid porous scaffolds. ACS Sustainable Chem. Eng. 2018, 6, 6761–6770.

55

Lei, C. X.; Wu, K.; Wu, L. Y.; Liu,W. J.; Du, R. N.; Chen, F.; Fu, Q. Phase change material with anisotropically high thermal conductivity and excellent shape stability due to its robust cellulose/BNNSs skeleton. J. Mater. Chem. A 2019, 7, 19364–19373.

56

An, F.; Li, X. F.; Min, P.; Li, H. F.; Dai, Z.; Yu, Z. Z. Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 2018, 126, 119–127.

57

Li, T. X.; Wu, M. Q.; Wu, S.; Xiang, S. Z.; Xu, J. X.; Chao, J. W.; Yan, T. S.; Deng, T.; Wang, R. Z. Highly conductive phase change composites enabled by vertically-aligned reticulated graphite nanoplatelets for high-temperature solar photo/electro-thermal energy conversion, harvesting and storage. Nano Energy 2021, 89, 106338.

58

Cheng, F.; Wen, R. L.; Zhang, X. G.; Huang, Z. H.; Huang, Y. T.; Fang, M. H.; Liu, Y.; Wu, X. W.; Min, X. Synthesis and characterization of beeswax-tetradecanol-carbon fiber/expanded perlite form-stable composite phase change material for solar energy storage. Compos. Part A Appl. Sci. Manuf. 2018, 107, 180–188.

59

Wei, H. T.; Li, X. Q. Preparation and characterization of a lauric-myristic-stearic acid/Al2O3-loaded expanded vermiculite composite phase change material with enhanced thermal conductivity. Sol. Energy Mater. Sol. Cells 2017, 166, 1–8.

60

Lv, P. Z.; Liu, C. Z.; Rao, Z. H. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials. Appl. Energy 2016, 182, 475–487.

61

Wei, H. T.; Xie, X. Z.; Li, X. Q.; Lin, X. S. Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material. Appl. Energy 2016, 178, 616–623.

62

Jia, X. W.; Li, Q. Y.; Ao, C. H.; Hu, R.; Xia, T.; Xue, Z. H.; Wang, Q. H.; Deng, X. Y.; Zhang, W.; Lu, C. H. High thermal conductive shape-stabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105710.

63

Yang, J.; Qi, G. Q.; Tang, L. S.; Bao, R. Y.; Bai, L.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Novel photodriven composite phase change materials with bioinspired modification of BN for solar-thermal energy conversion and storage. J. Mater. Chem. A 2016, 4, 9625–9634.

64

Wang, L.; Kong, X. F.; Ren, J. L.; Fan, M.; Li, H. Novel hybrid composite phase change materials with high thermal performance based on aluminium nitride and nanocapsules. Energy 2022, 238, 121775.

Nano Research
Pages 8065-8075
Cite this article:
Wang H, Liu X, Luo Q, et al. Artificial “honeycomb-honey” decorated with non-noble plasmonic nanoparticles for superior solar capture and thermal energy storage. Nano Research, 2022, 15(9): 8065-8075. https://doi.org/10.1007/s12274-022-4450-z
Topics:

877

Views

12

Crossref

12

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 24 December 2021
Revised: 16 March 2022
Accepted: 10 May 2022
Published: 31 May 2022
© Tsinghua University Press 2022
Return