AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Heterojunction between bimetallic metal-organic framework and TiO2: Band-structure engineering for effective photoelectrochemical water splitting

Ji Won YoonJae-Hyeok KimYoung-Moo JoJong-Heun Lee( )
Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

A facile synthesis of Fe/Ni bimetallic metal-organic framework (MOF)/TiO2 nanorod photoanodes through solvothermal reaction has been demonstrated, and the bandgaps and band positions of the MOFs are modulated by changing the ratio of the Fe and Ni components. The photocurrent density of TiO2 nanorods was dramatically improved by NH2-MIL(Fe0.25Ni0.75)-88 coating.

Abstract

Bimetallic Fe/Ni-based metal-organic frameworks (MOFs) with different Fe/Ni ratios were coated on TiO2 nanorods (NRs), and the performances of the heterojunction photoanodes in photoelectrochemical water splitting were investigated. The bandgaps and band positions of the MOFs could be modulated by changing the ratio of the Fe and Ni components. An ideal band alignment was achieved between the TiO2 NRs and bimetallic MOFs with an optimum ratio of [Fe]/[Ni] = 0.25/0.75, which allowed efficient light absorption and charge separation. The coating of NH2-MIL(Fe)-88 layer on the TiO2 NRs decreased the photocurrent density by 33%. In comparison, TiO2/NH2-MIL(Ni)-88 showed a modest improvement in photocurrent density (0.85 mA·cm−2 at 1.23 V vs. a reversible hydrogen electrode (RHE)). When bimetallic NH2-MIL(Fe0.25Ni0.75)-88 was coated on the TiO2 NRs, the photocurrent density reached 1.56 mA·cm−2, which was an efficiency enhancement of 3.2 times. The mechanism underlying high photoelectrochemical performance was investigated.

Electronic Supplementary Material

Download File(s)
12274_2022_4451_MOESM1_ESM.pdf (2 MB)

References

1

Jiang, C. R.; Moniz, S. J. A.; Wang, A. Q.; Zhang, T.; Tang, J. W. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 2017, 46, 4645–4660.

2

Nair, V.; Perkins, C. L.; Lin, Q. Y.; Law, M. Textured nanoporous Mo: BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution. Energy Environ. Sci. 2016, 9, 1412–1429.

3

Zhao, Y. H.; Brocks, G.; Genuit, H.; Lavrijsen, R.; Verheijen, M. A.; Bieberle-Hutter, A. Boosting the performance of WO3/n-Si heterostructures for photoelectrochemical water splitting: From the role of Si to interface engineering. Adv. Energy Mater. 2019, 9, 1900940.

4

Kment, S.; Riboni, F.; Pausova, S.; Wang, L.; Wang, L. Y.; Han, H.; Hubicka, Z.; Krysa, J.; Schmuki, P.; Zboril, R. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 2017, 46, 3716–3769.

5

Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.

6

Zhao, C. X.; Luo, H.; Chen, F.; Zhang, P.; Yi, L. H.; You, K. Y. A novel composite of TiO2 nanotubes with remarkably high efficiency for hydrogen production in solar-driven water splitting. Energy Environ. Sci. 2014, 7, 1700–1707.

7

Ge, M. Z.; Li, Q. S.; Cao, C. Y.; Huang, J. Y.; Li, S. H.; Zhang, S. N.; Chen, Z.; Zhang, K. Q.; Al-Deyab, S. S.; Lai, Y. K. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 2017, 4, 1600152.

8

Hendry, E.; Koeberg, M.; O’Regan, B.; Bonn, M. Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. Nano Lett. 2006, 6, 755–759.

9

Salvador, P. Hole diffusion length in n-TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis. J. Appl. Phys. 1984, 55, 2977–2985.

10

Chen, C. L.; Wei, Y. L.; Yuan, G. Z.; Liu, Q. L.; Lu, R. R.; Huang, X.; Cao, Y.; Zhu, P. H. Synergistic effect of Si doping and heat treatments enhances the photoelectrochemical water oxidation performance of TiO2 nanorod arrays. Adv. Funct. Mater. 2017, 27, 1701575.

11

Yu, Z. R.; Liu, H. B.; Zhu, M. Y.; Li, Y.; Li, W. X. Interfacial charge transport in 1D TiO2 based photoelectrodes for photoelectrochemical water splitting. Small 2021, 17, 1903378.

12

Li, H. M.; Wang, T.; Liu, S. S.; Luo, Z. B.; Li, L. L.; Wang, H. Y.; Zhao, Z. J.; Gong, J. L. Controllable distribution of oxygen vacancies in grain boundaries of p-Si/TiO2 heterojunction photocathodes for solar water splitting. Angew. Chem., Int. Ed. 2021, 60, 4034–4037.

13

Gao, C. M.; Wei, T.; Zhang, Y. Y.; Song, X. H.; Huan, Y.; Liu, H.; Zhao, M. W.; Yu, J. H.; Chen, X. D. A photoresponsive rutile TiO2 heterojunction with enhanced electron–hole separation for high-performance hydrogen evolution. Adv. Mater. 2019, 31, 1806596.

14

Cao, S.; Chan, T. S.; Lu, Y. R.; Shi, X. H.; Fu, B.; Wu, Z. J.; Li, H. M.; Liu, K.; Alzuabi, S.; Cheng, P. et al. Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy 2020, 67, 104287.

15

Xu, Q. L.; Zhang, L. Y.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042–1063.

16

Low, J.; Jiang, C. J.; Cheng, B.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. A review of direct Z-scheme photocatalysts. Small Methods 2017, 1, 1700080.

17

Che, H. B.; Xiao, L. Y.; Zhou, W. Y.; Zhou, Q. Q.; Li, H. Y.; Hu, P.; Wang, J. S.; Chen, X. B.; Wang, H. L. Decorating tungsten oxide on g-C3N4 nanosheet as Z-scheme heterogeneous photocatalyst for efficient hydrogen evolution. J. Alloys Compd. 2022, 896, 162931.

18

Xie, M. Z.; Fu, X. D.; Jing, L. Q.; Luan, P.; Feng, Y. J.; Fu, H. G. Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy Mater. 2014, 4, 1300995.

19

Resasco, J.; Zhang, H.; Kornienko, N.; Becknell, N.; Lee, H.; Guo, J. H.; Briseno, A. L.; Yang, P. D. TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent. Sci. 2016, 2, 80–88.

20

Tian, Z. L.; Zhang, P. F.; Qin, P.; Sun, D.; Zhang, S. N.; Guo, X. W.; Zhao, W.; Zhao, D. Y.; Huang, F. Q. Novel black BiVO4/TiO2−x photoanode with enhanced photon absorption and charge separation for efficient and stable solar water splitting. Adv. Energy Mater. 2019, 9, 1901287.

21

Yang, Y. L.; Wang, S. C.; Jiao, Y. L.; Wang, Z. L.; Xiao, M.; Du, A. J.; Li, Y. L.; Wang, J. S.; Wang, L. Z. An unusual red carbon nitride to boost the photoelectrochemical performance of wide bandgap photoanodes. Adv. Funct. Mater. 2018, 28, 1805698.

22

Xiao, L. M.; Liu, T. F.; Zhang, M.; Li, Q. Y.; Yang, J. J. Interfacial construction of zero-dimensional/one-dimensional g-C3N4 nanoparticles/TiO2 nanotube arrays with Z-scheme heterostructure for improved photoelectrochemical water splitting. ACS Sustainable Chem. Eng. 2019, 7, 2483–2491.

23

Ai, G. J.; Li, H. X.; Liu, S. P.; Mo, R.; Zhong, J. X. Solar water splitting by TiO2/CdS/Co-Pi nanowire array photoanode enhanced with Co-Pi as hole transfer relay and CdS as light absorber. Adv. Funct. Mater. 2015, 25, 5706–5713.

24

Yoo, I. H.; Kalanur, S. S.; Seo, H. A nanoscale p–n junction photoelectrode consisting of an NiOx layer on a TiO2/CdS nanorod core–shell structure for highly efficient solar water splitting. Appl. Catal. B: Environ. 2019, 250, 200–212.

25

Dhakshinamoorthy, A.; Asiri, A. M.; García, H. Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew. Chem., Int. Ed. 2016, 55, 5414–5445.

26

Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.

27

Jo, Y. K.; Jeong, S. Y.; Moon, Y. K.; Jo, Y. M.; Yoon, J. W.; Lee, J. H. Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor. Nat. Commun. 2021, 12, 4955.

28

Lin, Y. S. Molecular sieves for gas separation. Science 2016, 353, 121–122.

29

Mukherjee, S.; Zaworotko, M. J. Crystal engineering of hybrid coordination networks: From form to function. Trends Chem. 2020, 2, 506–518.

30

Jo, Y. M.; Lim, K.; Yoon, J. W.; Jo, Y. K.; Moon, Y. K.; Jang, H. W.; Lee, J. H. Visible-light-activated type II heterojunction in Cu3(hexahydroxytriphenylene)2/Fe2O3 hybrids for reversible NO2 sensing: Critical role of π–π* transition. ACS Cent. Sci. 2021, 7, 1176–1182.

31

Yoon, J. W.; Kim, J. H.; Kim, C.; Jang, H. W.; Lee, J. MOF-based hybrids for solar fuel production. Adv. Energy Mater. 2021, 11, 2003052.

32

Yang, H.; Bright, J.; Kasani, S.; Zheng, P.; Musho, T.; Chen, B. L.; Huang, L.; Wu, N. Q. Metal-organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting. Nano Res. 2019, 12, 643–650.

33

Yoon, J. W.; Kim, D. H.; Kim, J. H.; Jang, H. W.; Lee, J. H. NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes for efficient photoelectrochemical water splitting. Appl. Catal. B: Environ. 2019, 244, 511–518.

34

Zhang, W.; Li, R.; Zhao, X.; Chen, Z.; Law, A. W. K.; Zhou, K. A cobalt-based metal-organic framework as cocatalyst on BiVO4 photoanode for enhanced photoelectrochemical water oxidation. ChemSusChem 2018, 11, 2710–2716.

35

Zhou, S. Q.; Yue, P. F.; Huang, J. W.; Wang, L.; She, H. D.; Wang, Q. Z. High-performance photoelectrochemical water splitting of BiVO4@Co-MIm prepared by a facile in-situ deposition method. Chem. Eng. J. 2019, 371, 885–892.

36

Wang, H. L.; He, X.; Li, W. X.; Chen, H.; Fang, W.; Tian, P.; Xiao, F.; Zhao, L. Hematite nanorod arrays top-decorated with an MIL-101 layer for photoelectrochemical water oxidation. Chem. Commun. 2019, 55, 11382–11385.

37

Li, Y.; Fu, Y. Q.; Ni, B. L.; Ding, K. N.; Chen, W. K.; Wu, K. C.; Huang, X.; Zhang, Y. F. Effects of ligand functionalization on the photocatalytic properties of titanium-based MOF: A density functional theory study. AIP Adv. 2018, 8, 035012.

38

Musho, T.; Li, J. T.; Wu, N. Q. Band gap modulation of functionalized metal-organic frameworks. Phys. Chem. Chem. Phys. 2014, 16, 23646–23653.

39

Grau-Crespo, R.; Aziz, A.; Collins, A. W.; Crespo-Otero, R.; Hernández, N. C.; Rodriguez-Albelo, L. M.; Ruiz-Salvador, A. R.; Calero, S.; Hamad, S. Modelling a linker mix-and-match approach for controlling the optical excitation gaps and band alignment of zeolitic imidazolate frameworks. Angew. Chem., Int. Ed. 2016, 55, 16012–16016.

40

Aziz, A.; Ruiz-Salvador, A. R.; Hernández, N. C.; Calero, S.; Hamad, S.; Grau-Crespo, R. Porphyrin-based metal-organic frameworks for solar fuel synthesis photocatalysis: Band gap tuning via iron substitutions. J. Mater. Chem. A 2017, 5, 11894–11904.

41

Botas, J. A.; Calleja, G.; Sánchez-Sánchez, M.; Orcajo, M. G. Effect of Zn/Co ratio in MOF-74 type materials containing exposed metal sites on their hydrogen adsorption behaviour and on their band gap energy. Int. J. Hydrog. Energy 2011, 36, 10834–10844.

42

Nguyen, V. H.; Nguyen, T. D.; Bach, L. G.; Hoang, T.; Bui, Q. T. P.; Tran, L. D.; Nguyen, C. V.; Vo, D. V. N.; Do, S. T. Effective photocatalytic activity of mixed Ni/Fe-base metal-organic framework under a compact fluorescent daylight lamp. Catalysts 2018, 8, 487.

43

Zhao, X. J.; Pachfule, P.; Li, S.; Simke, J. R. J.; Schmidt, J.; Thomas, A. Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite. Angew. Chem., Int. Ed. 2018, 57, 8921–8926.

44

Zhang, X.; Luo, J. S.; Wan, K.; Plessers, D.; Sels, B.; Song, J. X.; Chen, L. G.; Zhang, T.; Tang, P. Y.; Morante, J. R. et al. From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts. J. Mater. Chem. A 2019, 7, 1616–1628.

45

Shi, L.; Wang, T.; Zhang, H. B.; Chang, K.; Meng, X. G.; Liu, H. M.; Ye, J. H. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Adv. Sci. 2015, 2, 1500006.

46

Zango, Z. U.; Jumbri, K.; Sambudi, N. S.; Bakar, N. H. H. A.; Abdullah, N. A. F.; Basheer, C.; Saad, B. Removal of anthracene in water by MIL-88(Fe), NH2-MIL-88(Fe), and mixed-MIL-88(Fe) metal-organic frameworks. RSC Adv. 2019, 9, 41490–41501.

47

Xiao, F. X.; Hung, S. F.; Miao, J. W.; Wang, H. Y.; Yang, H. B.; Liu, B. Metal-cluster-decorated TiO2 nanotube arrays: A composite heterostructure toward versatile photocatalytic and photoelectrochemical applications. Small 2015, 11, 554–567.

48

Gu, Q.; Gao, Z. W.; Yu, S. J.; Xue, C. Constructing Ru/TiO2 heteronanostructures toward enhanced photocatalytic water splitting via a RuO2/TiO2 heterojunction and Ru/TiO2 schottky junction. Adv. Mater. Interfaces 2016, 3, 1500631.

49

Zheng, F. Q.; Xiang, D.; Li, P.; Zhang, Z. W.; Du, C.; Zhuang, Z. H.; Li, X. K.; Chen, W. Highly conductive bimetallic Ni-Fe metal organic framework as a novel electrocatalyst for water oxidation. ACS Sustainable Chem. Eng. 2019, 7, 9743–9749.

50

Zhang, Y. Q.; Wang, J. L.; Ye, L.; Zhang, M. L.; Gong, Y. Q. In situ assembly of bimetallic MOF composites on IF as efficient electrocatalysts for the oxygen evolution reaction. Dalton Trans 2021, 50, 4720–4726.

51

Zheng, F. Q.; Zhang, Z. W.; Xiang, D.; Li, P.; Du, C.; Zhuang, Z. H.; Li, X. K.; Chen, W. Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential. J. Colloid Interface Sci. 2019, 555, 541–547.

52

Zhang, Z.; Yates, J. T. Jr. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551.

53

Selinsky, R. S.; Ding, Q.; Faber, M. S.; Wright, J. C.; Jin, S. Quantum dot nanoscale heterostructures for solar energy conversion. Chem. Soc. Rev. 2013, 42, 2963–2985.

54

Dotan, H.; Sivula, K.; Grätzel, M.; Rothschild, A.; Warren, S. C. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 2011, 4, 958–964.

55

Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W: BiVO4. J. Am. Chem. Soc. 2011, 133, 18370–18377.

56

Rao, P. M.; Cai, L. L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J. M.; Yang, P. D.; Zheng, X. L. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 2014, 14, 1099–1105.

57

Zhou, L. T.; Zhao, C. Q.; Giri, B.; Allen, P.; Xu, X. W.; Joshi, H.; Fan, Y. Y.; Titova, L. V.; Rao, P. M. High light absorption and charge separation efficiency at low applied voltage from Sb-doped SnO2/BiVO4 core/shell nanorod-array photoanodes. Nano Lett. 2016, 16, 3463–3474.

58

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

59

Hai, G. T.; Jia, X. L.; Zhang, K. Y.; Liu, X.; Wu, Z. Y.; Wang, G. High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets. Nano Energy 2018, 44, 345–352.

60

Huo, J. M.; Wang, Y.; Yan, L. T.; Xue, Y. Y.; Li, S. N.; Hu, M. C.; Jiang, Y. C.; Zhai, Q. G. In situ semi-transformation from heterometallic MOFs to Fe-Ni LDH/MOF hierarchical architectures for boosted oxygen evolution reaction. Nanoscale 2020, 12, 14514–14523.

61

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

62

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

63

Li, J.; Li, F.; Jin, J. Hole extraction and injection pathways constructed by the in situ growth of ultra-thin Fe-doped NiOOH co-catalysts on a fluorine-doped α-Fe2O3 photoanode. J. Power Sources 2021, 482, 228957.

64

Sun, B.; Shi, T. L.; Peng, Z. C.; Sheng, W. J.; Jiang, T.; Liao, G. L. Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting. Nanoscale Res. Lett. 2013, 8, 462.

65

Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B: Environ. 2019, 247, 107–114.

Nano Research
Pages 8502-8509
Cite this article:
Yoon JW, Kim J-H, Jo Y-M, et al. Heterojunction between bimetallic metal-organic framework and TiO2: Band-structure engineering for effective photoelectrochemical water splitting. Nano Research, 2022, 15(9): 8502-8509. https://doi.org/10.1007/s12274-022-4451-y
Topics:

809

Views

18

Crossref

18

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 18 January 2022
Revised: 18 March 2022
Accepted: 20 April 2022
Published: 17 May 2022
© Tsinghua University Press 2022, corrected publication 2022
Return