AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ self-templating synthesis of 3D hierarchical porous carbons from oxygen-bridged porous organic polymers for high-performance supercapacitors

Qi Xiong1Bei Liu1Yijiang Liu1Pu Wang1Hua Cheng3Huaming Li1,2( )Zhouguang Lu3( )Mei Yang1,2( )
College of Chemistry, Xiangtan University, Xiangtan 411105, China
Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, China
Department of Materials Science & Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, China
Show Author Information

Graphical Abstract

A simple in-situ self-templating strategy is developed to prepare three-dimensional (3D)hierarchical porous carbons derived from a new oxygen-bridged porous organic polymer (OPOP). The supercapacitors based on the optimized OPOP-800 sample display excellent capacitive performance.

Abstract

It is a big challenge to well control the porous structure of carbon materials for supercapacitor application. Herein, a simple in-situ self-templating strategy is developed to prepare three-dimensional (3D) hierarchical porous carbons with good combination of micro and meso-porous architecture derived from a new oxygen-bridged porous organic polymer (OPOP). The OPOP is produced by the condensation polymerization of cyanuric chloride and hydroquinone in NaOH ethanol solution and NaCl is in-situ formed as by-product that will serve as template to construct an interconnected 3D hierarchical porous architecture upon carbonization. The large interface pore architecture, and rich doping of N and O heteroatoms effectively promote the electrolyte accessibility and electronic conductivity, and provide abundant active sites for energy storage. Consequently, the supercapacitors based on the optimized OPOP-800 sample display an energy density of 8.44 and 27.28 Wh·kg−1 in 6.0 M KOH and 1.0 M Na2SO4 electrolytes, respectively. The capacitance retention is more than 94% after 10,000 cycles. Furthermore, density functional theory (DFT) calculations have been employed to unveil the charge storage mechanism in the OPOP-800. The results presented in this job are inspiring in finely tuning the porous structure to optimize the supercapacitive performance of carbon materials.

Electronic Supplementary Material

Download File(s)
12274_2022_4452_MOESM1_ESM.pdf (5.8 MB)

References

1

Miller, J. R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652.

2

Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280.

3

Wang, Y. F.; Yuan, H. M.; Zhu, Y. H.; Wang, Z. Q.; Hu, Z. W.; Xie, J. W.; Liao, C. Z.; Cheng, H.; Zhang, F. C.; Lu, Z. G. An all-in-one supercapacitor working at sub-zero temperatures. Sci. China Mater. 2020, 63, 660–666.

4

Xie, Y. Y.; Yu, C.; Guo, W.; Ni, L.; Wang, Z.; Yu, J. H.; Yang, L.; Fu, R.; Liu, K. L.; Qiu, J. S. A long/short-range interconnected carbon with well-defined mesopore for high-energy-density supercapacitors. Nano Res. 2022, 15, 1399–1408.

5

Li, S.; Hua, M. H.; Yang, Y.; Zheng, X. W.; Huang, W.; Si, P. C.; Ci, L. J.; Lou, J. Phosphorous-doped bimetallic sulfides embedded in heteroatom-doped carbon nanoarrays for flexible all-solid-state supercapacitors. Sci. China Mater. 2021, 64, 2439–2453.

6

Xue, Y. C.; Guo, X. M.; Wu, M. R.; Chen, J. L.; Duan, M. T.; Shi, J.; Zhang, J. H.; Cao, F.; Liu, Y. J.; Kong, Q. H. Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries. Nano Res. 2021, 14, 3598–3607.

7

Liu, B.; Liu, Y. J.; Chen, H. B.; Yang, M.; Li, H. M. MnO2 nanostructures deposited on graphene-like porous carbon nanosheets for high-rate performance and high-energy density asymmetric supercapacitors. ACS Sustainable Chem. Eng. 2019, 7, 3101–3110.

8

Gao, B.; Li, X. X.; Ding, K.; Huang, C.; Li, Q. W.; Chu, P. K.; Huo, K. F. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. J. Mater. Chem. A 2019, 7, 14–37.

9

Tang, A. C.; Wan, C. B.; Hu, X. Y.; Ju, X. Metal-organic framework-derived Ni/ZnO nano-sponges with delicate surface vacancies as anode materials for high-performance supercapacitors. Nano Res. 2021, 14, 4063–4072.

10

Yu, Y. W.; Hu, X. L.; Wang, S.; Qiao, H. D.; Liu, Z. Y.; Song, K. F.; Shen, X. D. High mass loading Ni4Co1-OH@CuO core–shell nanowire arrays obtained by electrochemical reconstruction for alkaline energy storage. Nano Res. 2022, 15, 685–693.

11

Yuan, S.; Duan, X.; Liu, J. Q.; Ye, Y.; Lv, F. S.; Liu, T.; Wang, Q.; Zhang, X. B. Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Mater. 2021, 42, 317–369.

12

Su, D. Q.; Huang, M.; Zhang, J. H.; Guo, X. M.; Chen, J. L.; Xue, Y. C.; Yuan, A. H.; Kong, Q. H. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020, 13, 2862–2868.

13

Zhu, J. H.; Zhuang, X. D.; Yang, J.; Feng, X. L.; Hirano, S. I. Graphene-coupled nitrogen-enriched porous carbon nanosheets for energy storage. J. Mater. Chem. A 2017, 5, 16732–16739.

14

Tian, W. J.; Zhang, H. Y.; Duan, X. G.; Sun, H. Q.; Shao, G. S.; Wang, S. B. Porous carbons: Structure-oriented design and versatile applications. Adv. Funct. Mater. 2020, 30, 1909265.

15

Wang, Y. K.; Chen, F.; Liu, Z. X.; Tang, Z. J.; Yang, Q.; Zhao, Y.; Du, S. Y.; Chen, Q.; Zhi, C. Y. A highly elastic and reversibly stretchable all-polymer supercapacitor. Angew. Chem., Int. Ed. 2019, 58, 15707–15711.

16

Zhao, Z. Y.; Xia, K. Q.; Hou, Y.; Zhang, Q. H.; Ye, Z. Z.; Lu, J. G. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: From conductive polymers. Chem. Soc. Rev. 2021, 50, 12702–12743.

17

Kaur, P.; Verma, G.; Sekhon, S. S. Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Prog. Mater. Sci. 2019, 102, 1–71.

18

Gao, L. F.; Zhang, G. Q.; Cai, J.; Huang, L.; Zhou, J.; Zhang, L. N. Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano Res. 2020, 13, 1604–1613.

19

Peng, H. J.; Raya, J.; Richard, F.; Baaziz, W.; Ersen, O.; Ciesielski, A.; Samorì, P. Synthesis of robust MOFs@COFs porous hybrid materials via an Aza–Diels–Alder reaction: Towards high-performance supercapacitor materials. Angew. Chem., Int. Ed. 2020, 59, 19602–19609.

20

Yang, M.; Liu, Y. J.; Chen, H. B.; Yang, D. G.; Li, H. M. Porous N-doped carbon prepared from triazine-based polypyrrole network: A highly efficient metal-free catalyst for oxygen reduction reaction in alkaline electrolytes. ACS Appl. Mater. Interfaces 2016, 8, 28615–28623.

21

Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

22

Yang, M.; Long, X.; Li, H. M.; Chen, H. B.; Liu, P. L. Porous organic-polymer-derived nitrogen-doped porous carbon nanoparticles for efficient oxygen reduction electrocatalysis and supercapacitors. ACS Sustainable Chem. Eng. 2019, 7, 2236–2244.

23

Liu, B.; Wen, J. K.; Chen, H. B.; Yang, M.; Liu, Y. J.; Li, H. M. O/N co-doped, layered porous carbon with mesoporosity up to 99% for ultrahigh-rate capability supercapacitors. Batteries Supercaps 2020, 3, 1091–1098.

24

Gu, B. N.; Su, H.; Chu, X.; Wang, Q.; Huang, H. C.; He, J. Q.; Wu, T. J.; Deng, W. L.; Zhang, H. T.; Yang, W. Q. Rationally assembled porous carbon superstructures for advanced supercapacitors. Chem. Eng. J. 2019, 361, 1296–1303.

25

Wang, W. K.; Zhao, W. W.; Xu, H. T.; Liu, S. J.; Huang, W.; Zhao, Q. Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coord. Chem. Rev. 2021, 429, 213616.

26

Xu, Q.; Tang, Y. P.; Zhai, L. P.; Chen, Q. H.; Jiang, D. L. Pyrolysis of covalent organic frameworks: A general strategy for template converting conventional skeletons into conducting microporous carbons for high-performance energy storage. Chem. Commun. 2017, 53, 11690–11693.

27

Yin, J.; Zhang, W. L.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 2020, 4, 1900853.

28

Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem., Int. Ed. 2008, 47, 3450–3453.

29

Guo, J.; Xu, Y. H.; Jin, S. B.; Chen, L.; Kaji, T.; Honsho, Y.; Addicoat, M. A.; Kim, J.; Saeki, A.; Ihee, H. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 2013, 4, 2736.

30

Hu, J. W.; Wu, D. Y.; Zhu, C.; Hao, C.; Xin, C. C.; Zhang, J. W.; Guo, J. Y.; Li, N. N.; Zhang, G. F.; Shi, Y. T. Melt-salt-assisted direct transformation of solid oxide into atomically dispersed FeN4 sites on nitrogen-doped porous carbon. Nano Energy 2020, 72, 104670.

31

Zhu, L. J.; Yang, P. F.; Huan, Y. H.; Pan, S. Y.; Zhang, Z. Q.; Cui, F. F.; Shi, Y. P.; Jiang, S. L.; Xie, C. Y.; Hong, M. et al. Scalable salt-templated directed synthesis of high-quality MoS2 nanosheets powders towards energetic and environmental applications. Nano Res. 2020, 13, 3098–3104.

32

Kleger, N.; Cihova, M.; Masania, K.; Studart, A. R.; Löffler, J. F. 3D printing of salt as a template for magnesium with structured porosity. Adv. Mater. 2019, 31, 1903783.

33

Gopalakrishnan, A.; Yu, A. M.; Badhulika, S. Three-dimensional nitrogen rich bubbled porous carbon sponge for supercapacitor & pressure sensing applications. Int. J. Energy Res. 2020, 44, 7242–7253.

34

Lin, H. P.; Wong, S. T.; Mou, C. Y.; Tang, C. Y. Extensive void defects in mesoporous aluminosilicate MCM-41. J. Phys. Chem. B. 2000, 104, 8967–8975.

35

Lin, H. P.; Mou, C. Y. Structural and morphological control of cationic surfactant-templated mesoporous silica. Acc. Chem. Res. 2002, 35, 927–935.

36

Han, L. N.; Wei, X.; Zhu, Q. C.; Xu, S. M.; Wang, K. X.; Chen, J. S. Nitrogen-doped carbon nets with micro/mesoporous structures as electrodes for high-performance supercapacitors. J. Mater. Chem. A. 2016, 4, 16698–16705.

37

Huang, W. H.; Li, X. M.; Yang, X. F.; Zhang, H. Y.; Liu, P. B.; Ma, Y. M.; Lu, X. CeO2-embedded mesoporous CoS/MoS2 as highly efficient and robust oxygen evolution electrocatalyst. Chem. Eng. J. 2021, 420, 127595.

38

Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation. J. Power Sources 2016, 326, 660–671.

39

Hulicova-Jurcakova, D.; Seredych, M.; Lu, G. Q.; Bandosz, T. J. Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 2009, 19, 438–447.

40

Liu, R. L.; Wu, D. Q.; Feng, X. L.; Müllen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem., Int. Ed. 2010, 49, 2565–2569.

41

Daems, N.; Sheng, X.; Vankelecom, I. F. J.; Pescarmona, P. P. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 4085–4110.

42

Yang, M.; Chen, H. B.; Yang, D. G.; Gao, Y.; Li, H. M. Using nitrogen-rich polymeric network and iron(II) acetate as precursors to synthesize highly efficient electrocatalyst for oxygen reduction reaction in alkaline media. J. Power Sources 2016, 307, 152–159.

43

Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.

44

Yang, L.; Zeng, J. F.; Zhou, L.; Shao, R. W.; Utetiwabo, W.; Tufail, M. K.; Wang, S. S.; Yang, W.; Zhang, J. T. Orderly defective superstructure for enhanced pseudocapacitive storage in titanium niobium oxide. Nano Res. 2022, 15, 1570–1578.

45

Silva, R.; Voiry, D.; Chhowalla, M.; Asefa, T. Efficient metal-free electrocatalysts for oxygen reduction: Polyaniline-derived N- and O-doped mesoporous carbons. J. Am. Chem. Soc. 2013, 135, 7823–7826.

46

Zhang, S. S. Heteroatom-doped carbons: Synthesis, chemistry and application in lithium/sulphur batteries. Inorg. Chem. Front. 2015, 2, 1059–1069.

47

Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280.

48

Xu, H. R.; Zhao, L. L.; Liu, X. M.; Huang, Q. S.; Wang, Y. Q.; Hou, C. X.; Hou, Y. Y.; Wang, J.; Dang, F.; Zhang, J. T. Metal-organic-framework derived core–shell N-doped carbon nanocages embedded with cobalt nanoparticles as high-performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 2006188.

49

Ding, W.; Li, L.; Xiong, K.; Wang, Y.; Li, W.; Nie, Y.; Chen, S. G.; Qi, X. Q.; Wei, Z. D. Shape fixing via salt recrystallization: A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5414–5420.

50

Lu, P.; Sun, Y.; Xiang, H. F.; Liang, X.; Yu, Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702434.

51

Tian, W. Q.; Gao, Q. M.; Tan, Y. L.; Yang, K.; Zhu, L. H.; Yang, C. X.; Zhang, H. Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mater. Chem. A 2015, 3, 5656–5664.

52

Guo, S. J.; Li, Y. T.; Li, B.; Grundish, N. S.; Cao, A. M.; Sun, Y. G.; Xu, Y. S.; Ji, Y. L. M.; Qiao, Y.; Zhang, Q. H. et al. Coordination-assisted precise construction of metal oxide nanofilms for high-performance solid-state batteries. J. Am. Chem. Soc. 2022, 144, 2179–2188.

53

Guo, D.; Yuan, H. R.; Wang, X. C.; Zhu, C. L.; Chen, Y. J. Urchin-like amorphous nitrogen-doped carbon nanotubes encapsulated with transition-metal-alloy@graphene core@shell nanoparticles for microwave energy attenuation. ACS Appl. Mater. Interfaces 2020, 12, 9628–9636.

54
Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: New York, 1980.
55

Wu, T. J.; Jing, M. J.; Yang, L.; Zou, G. Q.; Hou, H. S.; Zhang, Y.; Zhang, Y.; Cao, X. Y.; Ji, X. B. Controllable chain-length for covalent sulfur-carbon materials enabling stable and high-capacity sodium storage. Adv. Energy Mater. 2019, 9, 1803478.

56

Lu, Y.; Liang, J. N.; Deng, S. F.; He, Q. M.; Deng, S. Y.; Hu, Y. Z.; Wang, D. L. Hypercrosslinked polymers enabled micropore-dominant N, S co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 2019, 65, 103993.

57

Bu, Y. F.; Sun, T.; Cai, Y. J.; Du, L. Y.; Zhuo, O.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors. Adv. Mater. 2017, 29, 1700470.

58

Zhao, J.; Jiang, Y. F.; Fan, H.; Liu, M.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Ma, Y. W.; Hu, Z. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater. 2017, 29, 1604569.

59

Xie, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z. Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 2012, 24, 347–352.

60

Hou, S. C.; Cai, X.; Wu, H. W.; Yu, X.; Peng, M.; Yan, K.; Zou, D. C. Nitrogen-doped graphene for dye-sensitized solar cells and the role of nitrogen states in triiodide reduction. Energy Environ. Sci. 2013, 6, 3356–3362.

61

Shen, W.; Wang, C.; Xu, Q. J.; Liu, H. M.; Wang, Y. G. Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials. Adv. Energy Mater. 2015, 5, 1400982.

62

Chen, S. B.; Gao, W. S.; Chao, Y. Z.; Ma, Y.; Zhang, Y. H.; Ren, N.; Chen, H. Q.; Jin, L. J.; Li, J. G.; Bai, Y. X. Low temperature preparation of pore structure controllable graphene for high volumetric performance supercapacitors. Electrochim. Acta 2018, 273, 181–190.

63

Yang, L. Y.; Feng, Y.; Yu, D. B.; Qiu, J. H.; Zhang, X. F.; Dong, D. H.; Yao, J. F. Design of ZIF-based CNTs wrapped porous carbon with hierarchical pores as electrode materials for supercapacitors. J. Phys. Chem. Solids 2019, 125, 57–63.

64

Zhong, C.; Deng, Y. D.; Hu, W. B.; Qiao, J. L.; Zhang, L.; Zhang, J. J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539.

65

Fic, K.; Lota, G.; Meller, M.; Frackowiak, E. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 2012, 5, 5842–5850.

66

Cherusseri, J.; Kumar, K. S.; Pandey, D.; Barrios, E.; Thomas, J. Vertically aligned graphene-carbon fiber hybrid electrodes with superlong cycling stability for flexible supercapacitors. Small 2019, 15, 1902606.

67

Wang, L.; Lu, X. P.; Lei, S. B.; Song, Y. H. Graphene-based polyaniline nanocomposites: Preparation, properties and applications. J. Mater. Chem. A 2014, 2, 4491–4509.

68

Hu, J.; Xu, Z. L.; Li, X. Y.; Liang, S. J.; Chen, Y. M.; Lyu, L. L.; Yao, H. M.; Lu, Z. G.; Zhou, L. M. Partially graphitic hierarchical porous carbon nanofiber for high performance supercapacitors and lithium ion batteries. J. Power Sources 2020, 462, 228098.

69

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

70

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

71

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

72

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

73

Yang, C.; Yun, S. N.; Shi, J.; Sun, M. L.; Zafar, N.; Arshad, A.; Zhang, Y. W.; Zhang, L. S. Tailoring the supercapacitive behaviors of Co/Zn-ZIF derived nanoporous carbon via incorporating transition metal species: A hybrid experimental–computational exploration. Chem. Eng. J. 2021, 419, 129636.

Nano Research
Pages 7759-7768
Cite this article:
Xiong Q, Liu B, Liu Y, et al. In-situ self-templating synthesis of 3D hierarchical porous carbons from oxygen-bridged porous organic polymers for high-performance supercapacitors. Nano Research, 2022, 15(9): 7759-7768. https://doi.org/10.1007/s12274-022-4452-x
Topics:

1235

Views

31

Crossref

32

Web of Science

32

Scopus

4

CSCD

Altmetrics

Received: 01 March 2022
Revised: 30 March 2022
Accepted: 20 April 2022
Published: 13 May 2022
© Tsinghua University Press 2022
Return