AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ascorbic acid derived carbon dots promote circadian rhythm and contribute to attention deficit hyperactivity disorder

Jian Huang1Yun Wang1Zhaomin Zhong1Yurong Ma2Keru Deng1Changhong Liu1Hui Huang2Yang Liu2( )Xin Ding3( )Zhenhui Kang2,4( )
School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
Division of Neonatology, Children’s Hospital of Soochow University, Suzhou 215003, China
Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
Show Author Information

Graphical Abstract

The ascorbic acid derived carbon dots (VCDs) prolong circadian period for 0.6 h by modulating circadian gene expressions, and can stimulate dopaminergic neuron development in zebrafish brain, which results in an increase level of inter-cellular dopamine level. The use of VCDs can rescue the attention deficit hyperactivity disorder (ADHD) phenotype of zebrafish ADHD model caused by per1b mutation.

Abstract

Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children, and ADHD patients always display circadian abnormalities. While, the ADHD drugs currently used in clinic have strong side effects, such as psychosis, allergic reactions, and heart problems. Here, we demonstrated carbon dots derived from the ascorbic acid (VCDs) could strongly rescue the hyperactive and impulsive behaviour of a zebrafish ADHD disease model caused by per1b mutation. VCDs prolonged the circadian period of zebrafish for more than half an hour. In addition, the amplitude and circadian phase were also changed. The dopamine level was specifically increased, which may be caused by stimulation of the dopaminergic neuron development in the midbrain. Notably, it was found that the serotonin level was not altered by VCDs treatments. Also, the gene transcriptome effects of VCDs were discussed in present work. Our results provided the dynamic interactions of carbon dots with circadian system and dopamine signaling pathway, which illustrates a potential application of degradable and bio-safe VCDs for the treatment of the attention deficient and hyperactive disorder through circadian intervention.

Electronic Supplementary Material

Download File(s)
12274_2022_4454_MOESM1_ESM.pdf (618.8 KB)

References

1

Flores-Dourojeanni, J. P.; Van Rijt, C.; Van Den Munkhof, M. H.; Boekhoudt, L.; Luijendijk, M. C. M.; Vanderschuren, L.; Adan, R. A. H. Temporally specific roles of ventral tegmental area projections to the nucleus accumbens and prefrontal cortex in attention and impulse control. J. Neurosci. 2021, 41, 4293–4304.

2

Mikkelsen, S. H.; Olsen, J.; Bech, B. H.; Wu, C. S.; Liew, Z.; Gissler, M.; Obel, C.; Arah, O. A. Birth asphyxia measured by the pH value of the umbilical cord blood may predict an increased risk of attention deficit hyperactivity disorder. Acta Paediatr. 2017, 106, 944–952.

3

Wiesner, C. D.; Molzow, I.; Prehn-Kristensen, A.; Baving, L. Sleep-dependent consolidation of rewarded behavior is diminished in children with attention deficit hyperactivity disorder and a comorbid disorder of social behavior. Front. Psychol. 2017, 8, 167.

4

Kendall, T.; Taylor, E.; Perez, A.; Taylor, C. Diagnosis and management of attention-deficit/hyperactivity disorder in children, young people, and adults: Summary of NICE guidance. BMJ 2008, 337, a1239.

5

Rosler, M.; Retz, W.; Retz-Junginger, P.; Hengesch, G.; Schneider, M.; Supprian, T.; Schwitzgebel, P.; Pinhard, K.; Dovi-Akue, N.; Wender, P. et al. Prevalence of attention deficit-/hyperactivity disorder (ADHD) and comorbid disorders in young male prison inmates. Eur. Arch. Psychiatry Clin. Neurosci. 2004, 254, 365–371.

6

Huang, H.; Yang, S. W.; Liu, Y.; Yang, Y. C.; Li, H.; McLeod, J. A.; Ding, G. Q.; Huang, J.; Kang, Z. H. Photocatalytic polymerization from amino acid to protein by carbon dots at room temperature. ACS Appl. Bio Mater. 2019, 2, 5144–5153.

7
Wang, Y.; Kessel, E.; Lee, S.; Hong, S.; Raffanello, E.; Hulvershorn, L. A.; Margolis, A.; Peterson, B. S.; Posner, J. Causal effects of psychostimulants on neural connectivity: A mechanistic, randomized clinical trial. J. Child Psychol. Psychiatry, in press, https://doi.org/10.1111/jcpp.13585.
8

Capuzzi, E.; Capellazzi, M.; Caldiroli, A.; Cova, F.; Auxilia, A. M.; Rubelli, P.; Tagliabue, I.; Zanvit, F. G.; Peschi, G.; Buoli, M. et al. Screening for ADHD Symptoms among Criminal Offenders: Exploring the Association with Clinical Features. Healthcare 2022, 10, 180.

9

Lieschke, G. J.; Currie, P. D. Animal models of human disease: Zebrafish swim into view. Nat. Rev. Genet. 2007, 8, 353–367.

10

Huang, J.; Zhong, Z. M.; Wang, M. Y.; Chen, X. F.; Tan, Y. C.; Zhang, S. Q.; He, W.; He, X.; Huang, G. D.; Lu, H. P. et al. Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. J. Neurosci. 2015, 35, 2572–2587.

11

Whalley, K. A zebrafish model of ADHD. Nat. Rev. Neurosci. 2015, 16, 188.

12

Xue, X.; Yang, J. Y.; He, Y.; Wang, L. R.; Liu, P.; Yu, L. S.; Bi, G. H.; Zhu, M. M.; Liu, Y. Y.; Xiang, R. W. et al. Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice. Nat. Nanotechnol. 2016, 11, 613–620.

13

Kim, D.; Yoo, J. M.; Hwang, H.; Lee, J.; Lee, S. H.; Yun, S. P.; Park, M. J.; Lee, M.; Choi, S.; Kwon, S. H.; Lee, S.; Kwon, S. H. et al. Graphene quantum dots prevent α-synucleinopathy in Parkinson's disease. Nat. Nanotechnol. 2018, 13, 812–818.

14

Black, N.; Stockings, E.; Campbell, G.; Tran, L. T.; Zagic, D.; Hall, W. D.; Farrell, M.; Degenhardt, L. Cannabinoids for the treatment of mental disorders and symptoms of mental disorders: A systematic review and meta-analysis. Lancet Psychiatry 2019, 6, 995–1010.

15

Hua, Y. F.; Wang, C.; Huang, J.; Wang, K. J. A simple and efficient method for CRISPR/Cas9-induced mutant screening. J. Genet. Genom. 2017, 44, 207–213.

16

Liu, A. N.; Xu, Y. W.; Yan, Q.; Tong, L. The prevalence of attention deficit/hyperactivity disorder among Chinese children and adolescents. Sci. Rep. 2018, 8, 11169.

17

Garner, I.; Vichare, R.; Paulson, R.; Appavu, R.; Panguluri, S. K.; Tzekov, R.; Sahiner, N.; Ayyala, R.; Biswal, M. R. Carbon dots fabrication: Ocular imaging and therapeutic potential. Front. Bioeng. Biotechnol. 2020, 8, 573407.

18

Posner, J.; Polanczyk, G. V.; Sonuga-Barke, E. Attention-deficit hyperactivity disorder. Lancet 2020, 395, 450–462.

19

Li, H.; Huang, J.; Song, Y. X.; Zhang, M. L.; Wang, H. B.; Lu, F.; Huang, H.; Liu, Y.; Dai, X.; Gu, Z. L. et al. Degradable carbon dots with broad-spectrum antibacterial activity. ACS Appl. Mater. Interfaces 2018, 10, 26936–26946.

20

Li, H.; Huang, J.; Liu, Y.; Lu, F.; Zhong, J.; Wang, Y.; Li, S. M.; Lifshitz, Y.; Lee, S. T.; Kang, Z. H. Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots. Nano Res. 2019, 12, 1585–1593.

21

VanGuilder, H. D.; Vrana, K. E.; Freeman, W. M. Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques 2008, 44, 619–626.

22

Grabherr, M. G.; Haas, B. J.; Yassour, M.; Levin, J. Z.; Thompson, D. A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q. D. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652.

23

Yu, Y.; Sun, H. Y.; Gilmore, K.; Hou, T. J.; Wang, S. D.; Li, Y. Y. Aggregated single-walled carbon nanotubes absorb and deform dopamine-related proteins based on molecular dynamics simulations. ACS Appl. Mater. Interfaces 2017, 9, 32452–32462.

24

Bolyard, K. J.; Rowland, W. J. Context-dependent response to red coloration in stickleback. Anim. Behav. 1996, 52, 923–927.

25

Burns, G. L.; Walsh, J. A.; Servera, M.; Lorenzo-Seva, U.; Cardo, E.; Rodriguez-Fornells, A. Construct validity of ADHD/ODD rating scales: Recommendations for the evaluation of forthcoming DSM-V ADHD/ODD scales. J. Abnorm. Child Psychol. 2013, 41, 15–26.

26

Gong, R.; Ding, C.; Hu, J.; Lu, Y.; Liu, F.; Mann, E.; Xu, F. Q.; Cohen, M. B.; Luo, M. M. Role for the membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior. Science 2011, 333, 1642–1646.

27

Hanswijk, S. I.; Spoelder, M.; Shan, L.; Verheij, M. M. M.; Muilwijk, O. G.; Li, W. Z.; Liu, C. Q.; Kolk, S. M.; Homberg, J. R. Gestational factors throughout fetal neurodevelopment: The serotonin link. Int. J. Mol. Sci. 2020, 21, 5850.

28

Bornstein, R. A.; Baker, G. B.; Carroll, A.; King, G.; Wong, J. T. F.; Douglass, A. B. Plasma amino acids in attention deficit disorder. Psychiatry Res. 1990, 33, 301–306.

29

Ryu, S.; Mahler, J.; Acampora, D.; Holzschuh, J.; Erhardt, S.; Omodei, D.; Simeone, A.; Driever, W. Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Curr. Biol. 2007, 17, 873–880.

30

Lange, M.; Norton, W.; Coolen, M.; Chaminade, M.; Merker, S.; Proft, F.; Schmitt, A.; Vernier, P.; Lesch, K. P.; Bally-Cuif, L. The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol. Psychiatry 2012, 17, 946–954.

31

Arcos-Burgos, M.; Jain, M.; Acosta, M. T.; Shively, S.; Stanescu, H.; Wallis, D.; Domené, S.; Vélez, J. I.; Karkera, J. D.; Balog, J. et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol. Psychiatry 2010, 15, 1053–1066.

32

Tay, T. L.; Ronneberger, O.; Ryu, S.; Nitschke, R.; Driever, W. Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nat. Commun. 2011, 2, 171.

Nano Research
Pages 8247-8254
Cite this article:
Huang J, Wang Y, Zhong Z, et al. Ascorbic acid derived carbon dots promote circadian rhythm and contribute to attention deficit hyperactivity disorder. Nano Research, 2022, 15(9): 8247-8254. https://doi.org/10.1007/s12274-022-4454-8
Topics:

817

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 07 March 2022
Revised: 18 April 2022
Accepted: 20 April 2022
Published: 12 June 2022
© Tsinghua University Press 2022
Return