AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Large-scale preparation of high-performance boron nitride/aramid nanofiber dielectric composites

Liying Su1Xiaoyan Ma2Jiale Zhou1Xiangchen Liu3Fanglin Du1Chao Teng1( )
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Weihai Jin Hong Group Co., Ltd., Weihai 264211, China
Show Author Information

Graphical Abstract

In this work, a large-scale film was fabricated using blade-coating approach, which integrated aramid nanofiber (ANF) and boron nitride nanosheet (BNNS) through a typical sol-gel transformation procedure. The BNNS/ANF film exhibits ordered layered structure and is conferred excellent thermal conductivity, high mechanical properties, and stable dielectric properties over a broad temperature range.

Abstract

Dielectric polymers featuring high thermal conductivity, excellent mechanical, and stable dielectric properties over a broad temperature range have attracted extensive scientific attention. In this work, a large-scale, layered film was fabricated using blade-coating approach, which integrated aramid nanofibers (ANFs) and boron nitride nanosheets (BNNSs) through a typical sol-gel transformation procedure. The as-prepared film with 20 wt.% BNNS displays high thermal conductivity (14.03 W·m−1·K−1), 103-fold higher than pure ANF film, attributing to massive continuous thermal conduction pathway between BNNSs so as to facilitate fast phonon transmission. The film boasts excellent mechanical properties (stress 97.14 ± 5.17 MPa, strain 19.36 ± 0.35%), high degradation temperature (~ 542 °C), a moderate dielectric constant (~ 6.9 at 104 Hz), together with low dielectric loss (~ 0.026 at 104 Hz). Meanwhile, the film reveals high breakdown voltage (310 MV·m−1) and volume resistivity (1013 Ω·cm). Notably, these dielectric properties remain largely unchanged over a wide temperature range (25 to 200 °C).

Electronic Supplementary Material

Download File(s)
12274_2022_4456_MOESM1_ESM.pdf (1.8 MB)

References

1

Hassan, Y. A.; Hu, H. L. Current status of polymer nanocomposite dielectrics for high-temperature applications. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106064.

2

Nie, R. P.; Lei, J.; Jia, L. C.; Chen, C.; Xu, L.; Li, H.; Huang, H. D.; Yu, F. M.; Li, Z. M. Significantly improved high-temperature performance of polymer dielectric via building nanosheets and confined space. Compos. Part B Eng. 2020, 196, 108108.

3

Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.

4

Lokanathan, M.; Acharya, P. V.; Ouroua, A.; Strank, S. M.; Hebner R. E.; Bahadur, V. Review of nanocomposite dielectric materials with high thermal conductivity. Proc. IEEE 2021, 109, 1364–1397.

5

Cao, L.; Wang, J. J.; Dong, J.; Zhao, X.; Li H. B.; Zhang, Q. H. Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs microspheres. Compos. Part B Eng. 2020, 188, 107882.

6

Shinde, S. L.; Ishii, S.; Dao, T. D.; Sugavaneshwar, R. P.; Takei, T.; Nanda, K. K.; Nagao, T. Enhanced solar light absorption and photoelectrochemical conversion using TiN nanoparticle-incorporated C3N4-C dot sheets. ACS Appl. Mater. Interfaces 2018, 10, 2460–2468.

7

Ma, T. B.; Zhao, Y. S.; Ruan, K. P.; Liu, X. R.; Zhang, J. L.; Guo, Y. Q.; Yang, X. T.; Kong, J.; Gu, J. W. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces 2020, 12, 1677–1686.

8

Teng, C.; Su, L. Y.; Chen, J. X.; Wang, J. F. Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105498.

9

Li, L.; Cao, Y. X.; Liu, X. Y.; Wang, J. F.; Yang, Y. Y.; Wang, W. J. Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Appl. Mater. Interfaces 2020, 12, 27350–27360.

10

Han, J. K.; Du, G. L.; Gao, W. W.; Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 2019, 29, 1900412.

11

Ryu, S. Y.; Chung, J. W.; Kwak, S. Y. Amphiphobic meta-aramid nanofiber mat with improved chemical stability and mechanical properties. Eur. Polym. J. 2017, 91, 111–120.

12

Lei, C. X.; Zhang, Y. Z.; Liu, D. Y.; Wu, K.; Fu, Q. Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 2020, 12, 26485–26495.

13

Azizi, A.; Gadinski, M. R.; Li, Q.; AlSaud, M. A.; Wang, J. J.; Wang, Y.; Wang, B.; Liu, F. H.; Chen, L. Q.; Alem, N. et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 2017, 29, 1701864.

14

Chi, Q. G.; Gao, Z. Y.; Zhang, T. D.; Zhang, C. H.; Zhang, Y.; Chen, Q. G.; Wang, X.; Lei, Q. Q. Excellent energy storage properties with high-temperature stability in sandwich-structured polyimide-based composite films. ACS Sustainable Chem. Eng. 2019, 7, 748–757.

15

Vu, M. C.; Mani, D.; Jeong, T. H.; Kim, J. B.; Lim, C. S.; Kang, H.; Islam, M. A.; Lee, O. C.; Park, P. J.; Kim, S. R. Nacre-inspired nanocomposite papers of graphene fluoride integrated 3D aramid nanofibers towards heat-dissipating applications. Chem. Eng. J. 2022, 429, 132182.

16

Li, M.; Wang, M. J.; Hou, X.; Zhan, Z. L.; Wang, H.; Fu, H.; Lin, C. T.; Fu, L.; Jiang, N.; Yu, J. H. Highly thermal conductive and electrical insulating polymer composites with boron nitride. Compos. Part B Eng. 2020, 184, 107746.

17

Zhang, L.; Deng, H.; Fu, Q. Recent progress on thermal conductive and electrical insulating polymer composites. Compos. Commun. 2018, 8, 74–82.

18

Teng, C.; Xie, D.; Wang, J. F.; Yang, Z.; Ren, G. Y.; Zhu, Y. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 2017, 27, 1700240.

19

Tang, L.; He, M. K.; Na, X.; Guan, X. F.; Zhang, R. H.; Zhang, J. L.; Gu, J. W. Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos. Commun. 2019, 16, 5–10.

20

Gu, J. W.; Meng, X. D.; Tang, Y. S.; Li, Y.; Zhuang, Q.; Kong, J. Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Compos. Part A Appl. Sci. Manuf. 2017, 92, 27–32.

21

Liu, J. C.; Li, W. W.; Guo, Y. F.; Zhang, H.; Zhang, Z. Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing. Compos. Part A Appl. Sci. Manuf. 2019, 120, 140–146.

22

Chen, Y.; Kang, Q.; Jiang, P. K.; Huang, X. Y. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Res. 2020, 14, 2424–2431.

23

Li, L. H.; Chen, Y. Atomically thin boron nitride: Unique properties and applications. Adv. Funct. Mater. 2016, 26, 2594–2608.

24

Li, Y.; Tian, X J.; Yang, W.; Li, Q.; Hou, L. Q.; Zhu, Z. X.; Tang, Y. S.; Wang, M. J.; Zhang, B.; Pan, T. et al. Dielectric composite reinforced by in-situ growth of carbon nanotubes on boron nitride nanosheets with high thermal conductivity and mechanical strength. Chem. Eng. J. 2019, 358, 718–724.

25

Wang, T. T.; Wei, C. M.; Yan, L.; Liao, Y.; Wang, G. L.; Zhao, L. H.; Fu, M. L.; Ren, J. W. Thermally conductive, mechanically strong dielectric film made from aramid nanofiber and edge-hydroxylated boron nitride nanosheet for thermal management applications. Compos. Interfaces 2021, 28, 1067–1080.

26

Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934–959.

27

Wu, K.; Fang, J. C.; Ma, J. R.; Huang, R.; Chai, S. G.; Chen, F.; Fu, Q. Achieving a collapsible, strong, and highly thermally conductive film based on oriented functionalized boron nitride nanosheets and cellulose nanofiber. ACS Appl. Mater. Interfaces 2017, 9, 30035–30045.

28

Han, Y. X.; Shi, X. T.; Yang, X. T.; Guo, Y. Q.; Zhang, J. L.; Kong, J.; Gu, J. W. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos. Sci. Technol. 2020, 187, 107944.

29

Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Lu, Z. Q.; Ding, X. Y. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 2020, 30, 2000186.

30

Yang, M.; Cao, K. Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A. Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 2011, 5, 6945–6954.

31

Zhang, B.; Wang, W. C.; Tian, M.; Ning, N. Y.; Zhang, L. Q. Preparation of aramid nanofiber and its application in polymer reinforcement: A review. Eur. Polym. J. 2020, 139, 109996.

32

Roy, S.; Zhang, X.; Puthirath, A. B.; Meiyazhagan, A.; Bhattacharyya, S.; Rahman, M. M.; Babu, G.; Susarla, S.; Saju, S. K.; Tran, M. K. et al. Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 2021, 33, 2101589.

33

Zhao, Y.; Li, X.; Shen, J. N.; Gao, C. J.; Van Der Bruggen, B. The potential of Kevlar aramid nanofiber composite membranes. J. Mater. Chem. A 2020, 8, 7548–7568.

34

Wu, K.; Wang, J. M.; Liu, D. Y.; Lei, C. X.; Liu, D.; Lei, W. W.; Fu, Q. Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 2020, 32, 1906939.

35

Rahman, M. M.; Puthirath, A. B.; Adumbumkulath, A.; Tsafack, T.; Robatjazi, H.; Barnes, M.; Wang, Z. X.; Kommandur, S.; Susarla, S.; Sajadi, S. M. et al. Fiber reinforced layered dielectric nanocomposite. Adv. Funct. Mater. 2019, 29, 1900056.

36

Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx mxene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.

37

Zeng, F. Z.; Chen, X. H.; Xiao, G.; Li, H.; Xia, S.; Wang, J. F. A bioinspired ultratough multifunctional mica-based nanopaper with 3D aramid nanofiber framework as an electrical insulating material. ACS Nano 2020, 14, 611–619.

38

Wang, Y. J.; Xia, S.; Li, H.; Wang, J. F. Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix. Adv. Funct. Mater. 2019, 29, 1903876.

39

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) Thermal conductivity composite films with superior electromagnetic interference shielding and joule heating performances. Nano Res. 2022, 15, 4747–4755.

40

Weng, C. X.; Xing, T. L.; Jin, H.; Wang, G. R.; Dai, Z. H.; Pei, Y. M.; Liu, L. Q.; Zhang, Z. Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105927.

41

Kwon, S. R.; Harris, J.; Zhou, T. Y.; Loufakis, D.; Boyd, J. G.; Lutkenhaus, J. L. Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS Nano 2017, 11, 6682–6690.

42

Lin, M. Y.; Li, Y. H.; Xu, K.; Ou, Y. H.; Su, L. F.; Feng, X.; Li, J.; Qi, H. S.; Liu, D. T. Thermally conductive nanostructured, aramid dielectric composite films with boron nitride nanosheets. Compos. Sci. Technol. 2019, 175, 85–91.

43

Yang, L.; Qiu, J. H.; Ji, H. L.; Zhu, K. J.; Wang, J. Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly(vinylidene fluoride) composites. Compos. Part A Appl. Sci. Manuf. 2014, 65, 125–134.

44

Liu, S. N.; Tu, L.; Liu, C. C.; Tong, L. F.; Bai, Z. X.; Lin, G.; Jia, K.; Liu, X. B. Interfacial crosslinking enabled super-engineering polymer-based composites with ultra-stable dielectric properties beyond 350 °C. J. Alloys Compd. 2022, 891, 161952.

45

Li, M. J.; Zhu, Y. F.; Teng, C. Q. Facial fabrication of aramid composite insulating paper with high strength and good thermal conductivity. Compos. Commun. 2020, 21, 100370.

Nano Research
Pages 8648-8655
Cite this article:
Su L, Ma X, Zhou J, et al. Large-scale preparation of high-performance boron nitride/aramid nanofiber dielectric composites. Nano Research, 2022, 15(9): 8648-8655. https://doi.org/10.1007/s12274-022-4456-6
Topics:

1082

Views

23

Crossref

20

Web of Science

20

Scopus

2

CSCD

Altmetrics

Received: 12 March 2022
Revised: 03 April 2022
Accepted: 20 April 2022
Published: 06 July 2022
© Tsinghua University Press 2022
Return