AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Metformin capped Cu2(OH)3Cl nanosheets for chemodynamic wound disinfection

Xueyu Wang1,2,4,§Shaobo Wang2,3,§Jiao Gao4Shuncheng Yao2,5Teng Xu1,4Yunchao Zhao2,3Zeyu Zhang2,3Tian Huang2,3Shu Yan1,4( )Linlin Li2,3,5( )
306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing 100101, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

§ Xueyu Wang and Shaobo Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Metformin capped Cu2(OH)3Cl nanosheets are fabricated for chemodynamic antibacterial and would healing applications.

Abstract

Recently, the development of chemodynamic therapy (CDT) offers a potential approach for fighting bacteria and treating infectious diseases, in which those CDT nanoagents can catalyze the generation of hydroxyl radicals (•OH) to destroy bacteria. In this work, to improve the efficiency of CDT, we have designed a new kind of metformin (Met)-capped two-dimensional Cu2(OH)3Cl nanosheets (CuOHCl-Met NSs) with good monodispersity, highly positive charge, and good biocompatibility for improving antibacterial effect and accelerating wound healing. With the capped Met, CuOHCl-Met NSs can effectively kill bacteria under a low concentration (6 μg·mL−1) and a short treatment time (in 15 min), showing great advantages over the counterpart without Met. In vivo results demonstrated that CuOHCl-Met NSs accelerated the tissue regeneration of staphylococcus aureus-infected dermal wounds. This study provides a new pathway for improving efficiency of CDT nanoagent through using old drug.

Electronic Supplementary Material

Download File(s)
12274_2022_4457_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Makabenta, J. M. V.; Nabawy, A.; Li, C. H.; Schmidt-Malan, S.; Patel, R.; Rotello, V. M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 2021, 19, 23–36.

[2]
World Health of Organization. The Top 10 Causes of Death [Online]. WHO. http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed Dec 9, 2020).
[3]

Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15.

[4]

Garland, M.; Loscher, S.; Bogyo, M. Chemical strategies to target bacterial virulence. Chem. Rev. 2017, 117, 4422–4461.

[5]

Rello, J.; Campogiani, L.; Eshwara, V. K. Understanding resistance in enterococcal infections. Intens. Care Med. 2020, 46, 353–356.

[6]

Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655.

[7]

Balderrama-González, A. S.; Piñón-Castillo, H. A.; Ramírez-Valdespino, C. A.; Landeros-Martínez, L. L.; Orrantia-Borunda, E.; Esparza-Ponce, H. E. Antimicrobial resistance and inorganic nanoparticles. Int. J. Mol. Sci. 2021, 22, 12890.

[8]

Ermini, M. L.; Voliani, V. Antimicrobial nano-agents: The copper age. ACS Nano 2021, 15, 6008–6029.

[9]

Dibrov, P.; Dzioba, J.; Gosink, K. K.; Häse, C. C. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob. Agents Chemother. 2002, 46, 2668–2670.

[10]

Klasen, H. J. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 2000, 26, 117–130.

[11]

Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83.

[12]

Zhu, Y.; Xu, J.; Wang, Y. M.; Chen, C.; Gu, H. C.; Chai, Y. M.; Wang, Y. Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Res. 2020, 13, 389–400.

[13]

Zhao, Y.; Chen, L.; Wang, Y. N.; Song, X. Y.; Li, K. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.

[14]

Stabryla, L. M.; Johnston, K. A.; Diemler, N. A.; Cooper, V. S.; Millstone, J. E.; Haig, S. J.; Gilbertson, L. M. Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nat. Nanotechnol. 2021, 16, 996–1003.

[15]

Lin, L. S.; Huang, T.; Song, J. B.; Ou, X. Y.; Wang, Z. T.; Deng, H. Z.; Tian, R.; Liu, Y. J.; Wang, J. F.; Liu, Y. et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 9937–9945.

[16]

Xiao, Z. M.; Zuo, W. B.; Chen, L. P.; Wu, L.; Liu, N. A.; Liu, J. X.; Jin, Q. Y.; Zhao, Y. L.; Zhu, X. H2O2 self-supplying and GSH-depleting nanoplatform for chemodynamic therapy synergetic photothermal/chemotherapy. ACS Appl. Mater. Interfaces 2021, 13, 43925–43936.

[17]

Lu, J.; Jiang, Z. Y.; Ren, J.; Zhang, W.; Li, P.; Chen, Z. Z.; Zhang, W.; Wang, H.; Tang, B. One-pot synthesis of multifunctional carbon-based nanoparticle-supported dispersed Cu2+ disrupts redox homeostasis to enhance CDT. Angew. Chem., Int. Ed. 2022, 61, e202114373.

[18]

Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

[19]

Wang, S.; Wang, Z. T.; Yu, G. C.; Zhou, Z. J.; Jacobson, O.; Liu, Y. J.; Ma, Y.; Zhang, F. W.; Chen, Z. Y.; Chen, X. Y. Tumor-specific drug release and reactive oxygen species generation for cancer chemo/chemodynamic combination therapy. Adv. Sci. 2019, 6, 1801986.

[20]

Chen, X. Y.; Zhang, H. L.; Zhang, M.; Zhao, P. R.; Song, R. X.; Gong, T.; Liu, Y. Y.; He, X. H.; Zhao, K. L.; Bu, W. B. Amorphous Fe-based nanoagents for self-enhanced chemodynamic therapy by re-establishing tumor acidosis. Adv. Funct. Mater. 2020, 30, 1908365.

[21]

Tao, Q.; He, G. H.; Ye, S.; Zhang, D.; Zhang, Z. D.; Qi, L.; Liu, R. Y. Mn doped Prussian blue nanoparticles for T1/T2 MR imaging, PA imaging and Fenton reaction enhanced mild temperature photothermal therapy of tumor. J. Nanobiotechnol. 2022, 20, 18.

[22]

Wang, L.; Zhuang, L.; He, S.; Tian, F. Z.; Yang, X. T.; Guan, S. Y.; Waterhouse, G. I. N.; Zhou, S. Y. Nanocarbon framework-supported ultrafine Mo2C@MoOx nanoclusters for photothermal-enhanced tumor-specific tandem catalysis therapy. ACS Appl. Mater. Interfaces 2021, 13, 59649–59661.

[23]

Shan, J. Y.; Li, X.; Yang, K. L.; Xiu, W.; Wen, Q. R.; Zhang, Y. Q.; Yuwen, L. H.; Weng, L. X.; Teng, Z. G.; Wang, L. H. Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability. ACS Nano 2019, 13, 13797–13808.

[24]

Yang, N.; Guo, H.; Cao, C. Y.; Wang, X. R.; Song, X. J.; Wang, W. J.; Yang, D. L.; Xi, L.; Mou, X. Z.; Dong, X. C. Infection microenvironment-activated nanoparticles for NIR-II photoacoustic imaging-guided photothermal/chemodynamic synergistic anti-infective therapy. Biomaterials 2021, 275, 120918.

[25]

Guo, G. Y.; Zhang, H. L.; Shen, H.; Zhu, C. Z.; He, R. K.; Tang, J.; Wang, Y.; Jiang, X. W.; Wang, J. X.; Bu, W. B. et al. Space-selective chemodynamic therapy of CuFe5O8 nanocubes for implant-related infections. ACS Nano 2020, 14, 13391–13405.

[26]

Wang, Z. M.; Zhen, X.; Upputuri, P. K.; Jiang, Y. Y.; Lau, J.; Pramanik, M.; Pu, K. Y.; Xing, B. G. Redox-activatable and acid-enhanced nanotheranostics for second near-infrared photoacoustic tomography and combined photothermal tumor therapy. ACS Nano 2019, 13, 5816–5825.

[27]

Hao, Y.; Dong, Z. L.; Chen, M. C.; Chao, Y.; Liu, Z.; Feng, L. Z.; Hao, Y.; Dong, Z. L.; Chen, M. C.; Chao, Y. et al. Near-infrared light and glucose dual-responsive cascading hydroxyl radical generation for in situ gelation and effective breast cancer treatment. Biomaterials 2020, 228, 119568.

[28]

Jia, C. Y.; Guo, Y. X.; Wu, F. G. Chemodynamic therapy via fenton and fenton-like nanomaterials: Strategies and recent advances. Small 2022, 18, 2103868.

[29]

Wei, X. S.; Li, J.; Zhang, Y. F.; Zheng, Y.; Zhang, Y. L.; Meng, H. P.; Wu, G. L.; Hu, Y. Q.; Gao, Y. C.; Huang, S. Y. et al. Synergy between clinical microenvironment targeted nanoplatform and near-infrared light irradiation for managing Pseudomonas aeruginosa infections. ACS Appl. Mater. Interfaces 2021, 13, 38979–38989.

[30]

Liu, H. Y.; Zhong, W. H.; Zhang, X. Y.; Lin, D. J.; Wu, J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J. Mater. Chem. B 2021, 9, 7878–7908.

[31]

Mei, L. Q.; Zhu, S.; Liu, Y. P.; Yin, W. Y.; Gu, Z. J.; Zhao, Y. L. An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 2021, 418, 129431.

[32]

Mude, H.; Maroju, P. A.; Balapure, A.; Ganesan, R.; Ray Dutta, J. Quaternized polydopamine coatings for anchoring molecularly dispersed broad-spectrum antimicrobial silver salts. ACS Appl. Bio Mater. 2021, 4, 8396–8406.

[33]

Rabea, E. I.; Badawy, M. E. T.; Stevens, C. V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465.

[34]

Lin, J.; Chen, X. Y.; Chen, C. Y.; Hu, J. T.; Zhou, C. L.; Cai, X. F.; Wang, W.; Zheng, C.; Zhang, P. P.; Cheng, J. et al. Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. ACS Appl. Mater. Interfaces 2018, 10, 6124–6136.

[35]

Liu, C.; Guo, Y. Q.; Wei, X. J.; Wang, C.; Qu, M. C.; Schubert, D. W.; Zhang, C. H. An outstanding antichlorine and antibacterial membrane with quaternary ammonium salts of alkenes via in situ polymerization for textile wastewater treatment. Chem. Eng. J. 2020, 384, 123306.

[36]
Sterne, J. Du nouveau dans les antidiabétiques. La NN dimethylamine guanyl guanidine (N.N.D.G.). Maroc. Med. 1957, 36, 1295–1296.
[37]

Nosengo, N. Can you teach old drugs new tricks. Nature 2016, 534, 314–316.

[38]

Pernicova, I.; Korbonits, M. Metformin—Mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 2014, 10, 143–156.

[39]

Veeramachaneni, R.; Yu, W. J.; Newton, J. M.; Kemnade, J. O.; Skinner, H. D.; Sikora, A. G.; Sandulache, V. C. Metformin generates profound alterations in systemic and tumor immunity with associated antitumor effects. J. Immunother. Cancer 2021, 9, e002773.

[40]

Fatima, S.; Bhaskar, A.; Dwivedi, V. P. Repurposing immunomodulatory drugs to combat tuberculosis. Front. Immunol. 2021, 12, 645485.

[41]

Biegański, P.; Szczupak, L.; Arruebo, M.; Kowalski, K. Brief survey on organometalated antibacterial drugs and metal-based materials with antibacterial activity. RSC Chem. Biol. 2021, 2, 368–386.

[42]

Baghayeri, M.; Veisi, H.; Veisi, H.; Maleki, B.; Karimi-Maleh, H.; Beitollahi, H. Multi-walled carbon nanotubes decorated with palladium nanoparticles as a novel platform for electrocatalytic sensing applications. RSC Adv. 2014, 4, 49595–49604.

[43]

Repiščák, P.; Erhardt, S.; Rena, G.; Paterson, M. J. Biomolecular mode of action of metformin in relation to its copper binding properties. Biochemistry 2014, 53, 787–795.

[44]

Li, S. S.; Gu, K.; Wang, H.; Xu, B. L.; Li, H. W.; Shi, X. H.; Huang, Z. J.; Liu, H. Y. Degradable holey palladium nanosheets with highly active 1D nanoholes for synergetic phototherapy of hypoxic tumors. J. Am. Chem. Soc. 2020, 142, 5649–5656.

[45]

He, J.; Lu, Y. C.; Luo, G. S. Ca(II) imprinted chitosan microspheres: An effective and green adsorbent for the removal of Cu(II), Cd(II) and Pb(II) from aqueous solutions. Chem. Eng. J. 2014, 244, 202–208.

[46]

Sacks, D.; Baxter, B.; Campbell, B. C. V.; Carpenter, J. S.; Cognard, C.; Dippel, D.; Eesa, M.; Fischer, U.; Hausegger, K.; Hirsch, J. A. et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int. J. Stroke 2018, 13, 612–632.

[47]

Schneider, J. D.; Smith, B. A.; Williams, G. A.; Powell, D. R.; Perez, F.; Rowe, G. T.; Yang, L. Synthesis and characterization of Cu(II) and mixed-valence Cu(I)Cu(II) clusters supported by pyridylamide ligands. Inorg. Chem. 2020, 59, 5433–5446.

[48]

Yu, J.; Cao, Q.; Feng, B.; Li, C. L.; Liu, J. Y.; Clark, J. K.; Delaunay, J. J. Insights into the efficiency and stability of Cu-based nanowires for electrocatalytic oxygen evolution. Nano Res. 2018, 11, 4323–4332.

[49]

Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper–amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849–857.

[50]

Xiao, J. Y.; Hai, L.; Li, Y. Y.; Li, H.; Gong, M. H.; Wang, Z. F.; Tang, Z. F.; Deng, L.; He, D. G. An ultrasmall Fe3O4-decorated polydopamine hybrid nanozyme enables continuous conversion of oxygen into toxic hydroxyl radical via GSH-depleted cascade redox reactions for intensive wound disinfection. Small 2022, 18, 2105465.

[51]

Wu, M. Q.; Zhang, Z. Y.; Liu, Z. R.; Zhang, J. M.; Zhang, Y. L.; Ding, Y. M.; Huang, T.; Xiang, D. L.; Wang, Z.; Dai, Y. J. et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today 2021, 37, 101104.

[52]

Liu, Y.; Jia, Y. Q.; Yang, K. N.; Li, R. C.; Xiao, X.; Zhu, K.; Wang, Z. Q. Metformin restores tetracyclines susceptibility against multidrug resistant bacteria. Adv. Sci. 2020, 7, 1902227.

[53]
Wu, X. Y.; Fan, W.; Fan, B. Synergistic effects of silver ions and metformin against enterococcus faecalis under high-glucose conditions in vitro. BMC Microbiol 2021, 21, 261.
[54]

Masadeh, M. M.; Alzoubi, K. H.; Masadeh, M. M.; Aburashed, Z. O. Metformin as a potential adjuvant antimicrobial agent against multidrug resistant bacteria. Clin. Pharmacol. 2021, 13, 83–90.

[55]

Dash, A.; Behera, S. R.; Pattanaik, B. K.; Palo, A. K. Study of antimicrobial property of some hypoglycemic drugs. Chron. Young Sci. 2011, 2, 219–221.

[56]

Ma, Y. S.; Xu, H. H.; Sun, B.; Du, S. L.; Cui, S.; Zhang, L.; Ding, N.; Yang, D. Z. pH-responsive oxygen and hydrogen peroxide self-supplying nanosystem for photodynamic and chemodynamic therapy of wound infection. ACS Appl. Mater. Interfaces 2021, 13, 59720–59730.

Nano Research
Pages 3991-3997
Cite this article:
Wang X, Wang S, Gao J, et al. Metformin capped Cu2(OH)3Cl nanosheets for chemodynamic wound disinfection. Nano Research, 2023, 16(3): 3991-3997. https://doi.org/10.1007/s12274-022-4457-5
Topics:
Part of a topical collection:

2355

Views

9

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 14 March 2022
Revised: 16 April 2022
Accepted: 20 April 2022
Published: 19 May 2022
© Tsinghua University Press 2022
Return